Shuddup commited on
Commit
a52592f
·
1 Parent(s): 73478a4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ - accuracy
8
+ model-index:
9
+ - name: depression_classifier_unweighted_1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # depression_classifier_unweighted_1
17
+
18
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.0985
21
+ - F1: {'f1': 0.5363494361475553}
22
+ - Accuracy: {'accuracy': 0.6129429892141757}
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 6
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------:|:--------------------------------:|
53
+ | No log | 1.0 | 451 | 0.7291 | {'f1': 0.5311371197568231} | {'accuracy': 0.6604006163328198} |
54
+ | 0.7994 | 2.0 | 902 | 0.7153 | {'f1': 0.5663643865301549} | {'accuracy': 0.6619414483821263} |
55
+ | 0.6758 | 3.0 | 1353 | 0.7708 | {'f1': 0.5549493182827706} | {'accuracy': 0.6428351309707242} |
56
+ | 0.5489 | 4.0 | 1804 | 0.9657 | {'f1': 0.5398498068923226} | {'accuracy': 0.6061633281972265} |
57
+ | 0.4078 | 5.0 | 2255 | 1.0339 | {'f1': 0.5356239241887982} | {'accuracy': 0.6138674884437596} |
58
+ | 0.3112 | 6.0 | 2706 | 1.0985 | {'f1': 0.5363494361475553} | {'accuracy': 0.6129429892141757} |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.28.0
64
+ - Pytorch 2.0.1+cu118
65
+ - Datasets 2.12.0
66
+ - Tokenizers 0.13.3