Shridipta-06
commited on
Commit
•
41a2bad
1
Parent(s):
3bf8cb5
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.22 +/- 0.44
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3897e4808980a68d91804db086b8c891332cce7ec7a80c3d266a3c3ca4f5afd6
|
3 |
+
size 109158
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc0f3a48160>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc0f3a45400>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 500010,
|
23 |
+
"_total_timesteps": 500000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1674231992111677191,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAAhdFXP+Csjz+wtJK/wUQfPsUpLT/jLbq+MkJfv2G3gb934Hm/WnpHP7xfhb/BibQ+IAF3vy88Kz74h3g+n287P1Bvxb9dfjY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAg92EPztUhj8PB5G/zuAGPgPfGz8XjIu+O/tzv/5Nd7/wO5S/W/+FP9wsd7/o4uI+FQGnvzmH9j0LnMA+ezKAP9o/vL9/rzY+lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAACF0Vc/4KyPP7C0kr9F2Z897punvXdQ6DzBRB8+xSktP+Mtur4WFCq81wQIPF2jiDoyQl+/YbeBv3fgeb/wpKc8ZMbQPANpaL1aekc/vF+Fv8GJtD4BNXy91CMqvlq9Yb0gAXe/LzwrPviHeD7+qjY99MUBvrYQ8bufbzs/UG/Fv11+Nj42wqo9mTwIvXlvoTyUaA5LBksGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.84304076 1.1224632 -1.1461391 ]\n [ 0.15553571 0.6764186 -0.36363134]\n [-0.8721038 -1.0134088 -0.9760813 ]\n [ 0.7792107 -1.0419841 0.35261348]\n [-0.9648609 0.16722177 0.24270618]\n [ 0.73217195 -1.5424595 0.17821641]]",
|
38 |
+
"desired_goal": "[[ 1.03801 1.0494455 -1.1330279 ]\n [ 0.13171694 0.60887164 -0.27255318]\n [-0.9530522 -0.9660338 -1.1580791 ]\n [ 1.0468553 -0.96552825 0.4431374 ]\n [-1.3047205 0.1203751 0.3761905 ]\n [ 1.0015405 -1.4706986 0.17840384]]",
|
39 |
+
"observation": "[[ 8.4304076e-01 1.1224632e+00 -1.1461391e+00 7.8051127e-02\n -8.1840381e-02 2.8358681e-02]\n [ 1.5553571e-01 6.7641860e-01 -3.6363134e-01 -1.0380765e-02\n 8.3019352e-03 1.0424663e-03]\n [-8.7210381e-01 -1.0134088e+00 -9.7608131e-01 2.0464391e-02\n 2.5485225e-02 -5.6740772e-02]\n [ 7.7921069e-01 -1.0419841e+00 3.5261348e-01 -6.1573986e-02\n -1.6615230e-01 -5.5112220e-02]\n [-9.6486092e-01 1.6722177e-01 2.4270618e-01 4.4596665e-02\n -1.2673169e-01 -7.3567284e-03]\n [ 7.3217195e-01 -1.5424595e+00 1.7821641e-01 8.3378240e-02\n -3.3260915e-02 1.9706475e-02]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAuDPDPSABRb0/C4w+A6bjPbHtnDx1ZIc+2RWyPXoChT3zSHA+AqmovZ5hA72QZQo+vve8vHXjjb1NoJY+8LpdvYd6JD1d5RE9lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBksGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.09531349 -0.04809678 0.2735233 ]\n [ 0.11115649 0.01915631 0.2644383 ]\n [ 0.08695573 0.06494613 0.23465328]\n [-0.08235361 -0.03207552 0.13515306]\n [-0.02306735 -0.0692815 0.29419175]\n [-0.05413336 0.04015591 0.03561913]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": -1.999999999990898e-05,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkPmAQGdS7L+UhpRSlIwBbJRLMowBdJRHQJHidNahYeV1fZQoaAZoCWgPQwjwF7MlqyLqv5SGlFKUaBVLMmgWR0CR4f4agmJFdX2UKGgGaAloD0MIk3L3OT7a7r+UhpRSlGgVSzJoFkdAkeGCS7oStnV9lChoBmgJaA9DCKp+pfPh2fa/lIaUUpRoFUsyaBZHQJHhCdWhh6V1fZQoaAZoCWgPQwiuLqcExKTwv5SGlFKUaBVLMmgWR0CR5pBTn7pFdX2UKGgGaAloD0MIFqJD4Egg5L+UhpRSlGgVSzJoFkdAkeXomw7kn3V9lChoBmgJaA9DCHlZEwt8xeS/lIaUUpRoFUsyaBZHQJHlZRyfcvd1fZQoaAZoCWgPQwhIiV3b263iv5SGlFKUaBVLMmgWR0CR5O35N47jdX2UKGgGaAloD0MIp+Zyg6GO8L+UhpRSlGgVSzJoFkdAkeRx8D0UXnV9lChoBmgJaA9DCK7zb5f9Ou+/lIaUUpRoFUsyaBZHQJHj+UnogV51fZQoaAZoCWgPQwjKNnAH6pTqv5SGlFKUaBVLMmgWR0CR6XgctGutdX2UKGgGaAloD0MIyvs4miMr5b+UhpRSlGgVSzJoFkdAkejQw0wai3V9lChoBmgJaA9DCM5RR8fVSOi/lIaUUpRoFUsyaBZHQJHoTWy1NQF1fZQoaAZoCWgPQwjnjCjtDb7qv5SGlFKUaBVLMmgWR0CR59ZqVQhwdX2UKGgGaAloD0MIiZgSSfQy77+UhpRSlGgVSzJoFkdAkedaYVqN63V9lChoBmgJaA9DCA1S8BRypeG/lIaUUpRoFUsyaBZHQJHm4bEP1+R1fZQoaAZoCWgPQwiHF0Skpt3tv5SGlFKUaBVLMmgWR0CR7Ey+6Ae8dX2UKGgGaAloD0MIKsWOxqF+97+UhpRSlGgVSzJoFkdAkeulSS/0unV9lChoBmgJaA9DCLt868N6I+K/lIaUUpRoFUsyaBZHQJHrIe3hGYt1fZQoaAZoCWgPQwg7N23GaUj1v5SGlFKUaBVLMmgWR0CR6qrRBu4xdX2UKGgGaAloD0MI2NMOf03W7L+UhpRSlGgVSzJoFkdAkeouueSSvHV9lChoBmgJaA9DCEiKyLCKN92/lIaUUpRoFUsyaBZHQJHptb7j1f51fZQoaAZoCWgPQwgtlbcjnJbjv5SGlFKUaBVLMmgWR0CR7yHRCx/vdX2UKGgGaAloD0MI0Vs8vOdA6b+UhpRSlGgVSzJoFkdAke56Cg9Ne3V9lChoBmgJaA9DCJ2C/Gzk+vK/lIaUUpRoFUsyaBZHQJHt9rO7g891fZQoaAZoCWgPQwh6xOi5ha7tv5SGlFKUaBVLMmgWR0CR7X+3Ytg8dX2UKGgGaAloD0MI0/pbAvAP8r+UhpRSlGgVSzJoFkdAke0D0163RXV9lChoBmgJaA9DCFSthVloZ+m/lIaUUpRoFUsyaBZHQJHsixrzoU11fZQoaAZoCWgPQwjTZpyGqAL1v5SGlFKUaBVLMmgWR0CR8fzhP0qZdX2UKGgGaAloD0MI7NtJRPiX5b+UhpRSlGgVSzJoFkdAkfFVGb1AaHV9lChoBmgJaA9DCML4adyb3+u/lIaUUpRoFUsyaBZHQJHw0ZsKsuF1fZQoaAZoCWgPQwizs+idCrjuv5SGlFKUaBVLMmgWR0CR8FqWC2+gdX2UKGgGaAloD0MI3e9QFOgT47+UhpRSlGgVSzJoFkdAke/ei8FpwnV9lChoBmgJaA9DCOcYkL3e/ea/lIaUUpRoFUsyaBZHQJHvZgAp8Wt1fZQoaAZoCWgPQwjlCu9yEd/5v5SGlFKUaBVLMmgWR0CR9NWjXWe6dX2UKGgGaAloD0MIyJQPQdXo7L+UhpRSlGgVSzJoFkdAkfQtwNsnA3V9lChoBmgJaA9DCNffEoB/KgDAlIaUUpRoFUsyaBZHQJHzqpKjBVN1fZQoaAZoCWgPQwiUhETaxt/wv5SGlFKUaBVLMmgWR0CR8zOIqLCOdX2UKGgGaAloD0MI7C+7Jw9L+r+UhpRSlGgVSzJoFkdAkfK32h7E53V9lChoBmgJaA9DCK67eapDbvC/lIaUUpRoFUsyaBZHQJHyP2g39751fZQoaAZoCWgPQwjMmljgK7rev5SGlFKUaBVLMmgWR0CR95pRoAXEdX2UKGgGaAloD0MIUMdjBipj+r+UhpRSlGgVSzJoFkdAkfby2c8Tz3V9lChoBmgJaA9DCP+vOnKkM+2/lIaUUpRoFUsyaBZHQJH2bzXjENx1fZQoaAZoCWgPQwi4Wicux6vqv5SGlFKUaBVLMmgWR0CR9fgHu7YkdX2UKGgGaAloD0MI1V5E2zE1/L+UhpRSlGgVSzJoFkdAkfV8NYr8SHV9lChoBmgJaA9DCN0Ii4o4Hfa/lIaUUpRoFUsyaBZHQJH1A3l0YCR1fZQoaAZoCWgPQwg9DRgkfRr9v5SGlFKUaBVLMmgWR0CR+nNucc2jdX2UKGgGaAloD0MIlDMUd7xJ57+UhpRSlGgVSzJoFkdAkfnLronrp3V9lChoBmgJaA9DCC0Heqhtw+S/lIaUUpRoFUsyaBZHQJH5SDRMN+d1fZQoaAZoCWgPQwiwcJLmj2n4v5SGlFKUaBVLMmgWR0CR+NEhJRO2dX2UKGgGaAloD0MIFAX6RJ6k/L+UhpRSlGgVSzJoFkdAkfhVOfukUXV9lChoBmgJaA9DCHGPpQ9dkP+/lIaUUpRoFUsyaBZHQJH33Mpw0fp1fZQoaAZoCWgPQwgZA+s4fuj4v5SGlFKUaBVLMmgWR0CR/VWuoxYadX2UKGgGaAloD0MIG2X9ZmK68b+UhpRSlGgVSzJoFkdAkfyt9MK1HHV9lChoBmgJaA9DCGjKTj+oy/m/lIaUUpRoFUsyaBZHQJH8KtSydFx1fZQoaAZoCWgPQwg9D+7O2u30v5SGlFKUaBVLMmgWR0CR+7PSDyvtdX2UKGgGaAloD0MIPZ6WH7jK8L+UhpRSlGgVSzJoFkdAkfs3xe9i+nV9lChoBmgJaA9DCDSEY5Y9yf+/lIaUUpRoFUsyaBZHQJH6vustCiR1fZQoaAZoCWgPQwgtB3qobYP2v5SGlFKUaBVLMmgWR0CSAGF3IMjNdX2UKGgGaAloD0MIw/UoXI8C87+UhpRSlGgVSzJoFkdAkf+6ASWZ7XV9lChoBmgJaA9DCG3GaYgq/PS/lIaUUpRoFUsyaBZHQJH/NoYekpJ1fZQoaAZoCWgPQwgi41Eq4Qnxv5SGlFKUaBVLMmgWR0CR/r+2mYShdX2UKGgGaAloD0MIWYtPATCeA8CUhpRSlGgVSzJoFkdAkf5Dx5LRKHV9lChoBmgJaA9DCPNUh9wMd/K/lIaUUpRoFUsyaBZHQJH9ywX668R1fZQoaAZoCWgPQwjH155ZEqDmv5SGlFKUaBVLMmgWR0CSA1jNpudgdX2UKGgGaAloD0MITYV4JF4e97+UhpRSlGgVSzJoFkdAkgKxNIsiCHV9lChoBmgJaA9DCBah2Aqa9gXAlIaUUpRoFUsyaBZHQJICLZSNwR51fZQoaAZoCWgPQwi2ErpL4qzlv5SGlFKUaBVLMmgWR0CSAbaLXL/0dX2UKGgGaAloD0MIISI17WIa/b+UhpRSlGgVSzJoFkdAkgE6r/82rHV9lChoBmgJaA9DCAVPIVfqWfm/lIaUUpRoFUsyaBZHQJIAwkRjBmB1fZQoaAZoCWgPQwjqXif1Zen3v5SGlFKUaBVLMmgWR0CSBitZFG5MdX2UKGgGaAloD0MIfQiqRq+G97+UhpRSlGgVSzJoFkdAkgWDjrAxjHV9lChoBmgJaA9DCIZY/RGGge+/lIaUUpRoFUsyaBZHQJIFABkqc3F1fZQoaAZoCWgPQwgBTYQNT+/zv5SGlFKUaBVLMmgWR0CSBIktVaOhdX2UKGgGaAloD0MIhVs+kpJe9L+UhpRSlGgVSzJoFkdAkgQNVea8YnV9lChoBmgJaA9DCMpOP6iL1PG/lIaUUpRoFUsyaBZHQJIDlJg9eQd1fZQoaAZoCWgPQwiDhv4JLlbrv5SGlFKUaBVLMmgWR0CSCQxBE8aGdX2UKGgGaAloD0MIQRAgQ8cO7b+UhpRSlGgVSzJoFkdAkghksJ6Y3XV9lChoBmgJaA9DCJc8npYfGATAlIaUUpRoFUsyaBZHQJIH4S39aU11fZQoaAZoCWgPQwgPuRluwKf1v5SGlFKUaBVLMmgWR0CSB2qvNeMRdX2UKGgGaAloD0MIxvmbUIjA87+UhpRSlGgVSzJoFkdAkgbu67NB4XV9lChoBmgJaA9DCBvZlZaRuve/lIaUUpRoFUsyaBZHQJIGdhd+ocd1fZQoaAZoCWgPQwh7Mv/om/QFwJSGlFKUaBVLMmgWR0CSC+5xBE8adX2UKGgGaAloD0MIUDqRYKqZ67+UhpRSlGgVSzJoFkdAkgtGk8A7xXV9lChoBmgJaA9DCGAgCJChY/q/lIaUUpRoFUsyaBZHQJIKwyhzvJB1fZQoaAZoCWgPQwhOYaWCiur0v5SGlFKUaBVLMmgWR0CSCkxxT850dX2UKGgGaAloD0MIVwdA3NUr+7+UhpRSlGgVSzJoFkdAkgnQemvW6XV9lChoBmgJaA9DCAk02NR5VPC/lIaUUpRoFUsyaBZHQJIJV84Pwux1fZQoaAZoCWgPQwhEqFKzB9rlv5SGlFKUaBVLMmgWR0CSDs8h9srNdX2UKGgGaAloD0MIPBIvT+eK8b+UhpRSlGgVSzJoFkdAkg4nfZVXFXV9lChoBmgJaA9DCAckYd9OouW/lIaUUpRoFUsyaBZHQJINpA/s3Q51fZQoaAZoCWgPQwgdy7vqATP6v5SGlFKUaBVLMmgWR0CSDS0knkT6dX2UKGgGaAloD0MIObNdoQ+W3r+UhpRSlGgVSzJoFkdAkgyxCpm29nV9lChoBmgJaA9DCCbGMv0S8fq/lIaUUpRoFUsyaBZHQJIMOE12q1h1fZQoaAZoCWgPQwhJvDydK0r4v5SGlFKUaBVLMmgWR0CSEbd5IH1OdX2UKGgGaAloD0MIXalnQSgv8b+UhpRSlGgVSzJoFkdAkhEP6CUX53V9lChoBmgJaA9DCN9t3jgpjPa/lIaUUpRoFUsyaBZHQJIQjJQtSQ51fZQoaAZoCWgPQwgrpWd6iZEAwJSGlFKUaBVLMmgWR0CSEBYoy9EkdX2UKGgGaAloD0MIcsPvplu2+7+UhpRSlGgVSzJoFkdAkg+abSZ0CHV9lChoBmgJaA9DCOuLhLacCwTAlIaUUpRoFUsyaBZHQJIPIdXDFZR1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 16667,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 6
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fa43fd8e98a45976f3de648611109f73015469656c3e39a5c8255ddced6b21c
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d7dba1c5650923a76b0ea052644b7e6f26e55c57dfb0f9a66ddef81cdf06adf
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc0f3a48160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc0f3a45400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500010, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674231992111677191, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAAhdFXP+Csjz+wtJK/wUQfPsUpLT/jLbq+MkJfv2G3gb934Hm/WnpHP7xfhb/BibQ+IAF3vy88Kz74h3g+n287P1Bvxb9dfjY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAg92EPztUhj8PB5G/zuAGPgPfGz8XjIu+O/tzv/5Nd7/wO5S/W/+FP9wsd7/o4uI+FQGnvzmH9j0LnMA+ezKAP9o/vL9/rzY+lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAACF0Vc/4KyPP7C0kr9F2Z897punvXdQ6DzBRB8+xSktP+Mtur4WFCq81wQIPF2jiDoyQl+/YbeBv3fgeb/wpKc8ZMbQPANpaL1aekc/vF+Fv8GJtD4BNXy91CMqvlq9Yb0gAXe/LzwrPviHeD7+qjY99MUBvrYQ8bufbzs/UG/Fv11+Nj42wqo9mTwIvXlvoTyUaA5LBksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.84304076 1.1224632 -1.1461391 ]\n [ 0.15553571 0.6764186 -0.36363134]\n [-0.8721038 -1.0134088 -0.9760813 ]\n [ 0.7792107 -1.0419841 0.35261348]\n [-0.9648609 0.16722177 0.24270618]\n [ 0.73217195 -1.5424595 0.17821641]]", "desired_goal": "[[ 1.03801 1.0494455 -1.1330279 ]\n [ 0.13171694 0.60887164 -0.27255318]\n [-0.9530522 -0.9660338 -1.1580791 ]\n [ 1.0468553 -0.96552825 0.4431374 ]\n [-1.3047205 0.1203751 0.3761905 ]\n [ 1.0015405 -1.4706986 0.17840384]]", "observation": "[[ 8.4304076e-01 1.1224632e+00 -1.1461391e+00 7.8051127e-02\n -8.1840381e-02 2.8358681e-02]\n [ 1.5553571e-01 6.7641860e-01 -3.6363134e-01 -1.0380765e-02\n 8.3019352e-03 1.0424663e-03]\n [-8.7210381e-01 -1.0134088e+00 -9.7608131e-01 2.0464391e-02\n 2.5485225e-02 -5.6740772e-02]\n [ 7.7921069e-01 -1.0419841e+00 3.5261348e-01 -6.1573986e-02\n -1.6615230e-01 -5.5112220e-02]\n [-9.6486092e-01 1.6722177e-01 2.4270618e-01 4.4596665e-02\n -1.2673169e-01 -7.3567284e-03]\n [ 7.3217195e-01 -1.5424595e+00 1.7821641e-01 8.3378240e-02\n -3.3260915e-02 1.9706475e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAuDPDPSABRb0/C4w+A6bjPbHtnDx1ZIc+2RWyPXoChT3zSHA+AqmovZ5hA72QZQo+vve8vHXjjb1NoJY+8LpdvYd6JD1d5RE9lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09531349 -0.04809678 0.2735233 ]\n [ 0.11115649 0.01915631 0.2644383 ]\n [ 0.08695573 0.06494613 0.23465328]\n [-0.08235361 -0.03207552 0.13515306]\n [-0.02306735 -0.0692815 0.29419175]\n [-0.05413336 0.04015591 0.03561913]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1.999999999990898e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkPmAQGdS7L+UhpRSlIwBbJRLMowBdJRHQJHidNahYeV1fZQoaAZoCWgPQwjwF7MlqyLqv5SGlFKUaBVLMmgWR0CR4f4agmJFdX2UKGgGaAloD0MIk3L3OT7a7r+UhpRSlGgVSzJoFkdAkeGCS7oStnV9lChoBmgJaA9DCKp+pfPh2fa/lIaUUpRoFUsyaBZHQJHhCdWhh6V1fZQoaAZoCWgPQwiuLqcExKTwv5SGlFKUaBVLMmgWR0CR5pBTn7pFdX2UKGgGaAloD0MIFqJD4Egg5L+UhpRSlGgVSzJoFkdAkeXomw7kn3V9lChoBmgJaA9DCHlZEwt8xeS/lIaUUpRoFUsyaBZHQJHlZRyfcvd1fZQoaAZoCWgPQwhIiV3b263iv5SGlFKUaBVLMmgWR0CR5O35N47jdX2UKGgGaAloD0MIp+Zyg6GO8L+UhpRSlGgVSzJoFkdAkeRx8D0UXnV9lChoBmgJaA9DCK7zb5f9Ou+/lIaUUpRoFUsyaBZHQJHj+UnogV51fZQoaAZoCWgPQwjKNnAH6pTqv5SGlFKUaBVLMmgWR0CR6XgctGutdX2UKGgGaAloD0MIyvs4miMr5b+UhpRSlGgVSzJoFkdAkejQw0wai3V9lChoBmgJaA9DCM5RR8fVSOi/lIaUUpRoFUsyaBZHQJHoTWy1NQF1fZQoaAZoCWgPQwjnjCjtDb7qv5SGlFKUaBVLMmgWR0CR59ZqVQhwdX2UKGgGaAloD0MIiZgSSfQy77+UhpRSlGgVSzJoFkdAkedaYVqN63V9lChoBmgJaA9DCA1S8BRypeG/lIaUUpRoFUsyaBZHQJHm4bEP1+R1fZQoaAZoCWgPQwiHF0Skpt3tv5SGlFKUaBVLMmgWR0CR7Ey+6Ae8dX2UKGgGaAloD0MIKsWOxqF+97+UhpRSlGgVSzJoFkdAkeulSS/0unV9lChoBmgJaA9DCLt868N6I+K/lIaUUpRoFUsyaBZHQJHrIe3hGYt1fZQoaAZoCWgPQwg7N23GaUj1v5SGlFKUaBVLMmgWR0CR6qrRBu4xdX2UKGgGaAloD0MI2NMOf03W7L+UhpRSlGgVSzJoFkdAkeouueSSvHV9lChoBmgJaA9DCEiKyLCKN92/lIaUUpRoFUsyaBZHQJHptb7j1f51fZQoaAZoCWgPQwgtlbcjnJbjv5SGlFKUaBVLMmgWR0CR7yHRCx/vdX2UKGgGaAloD0MI0Vs8vOdA6b+UhpRSlGgVSzJoFkdAke56Cg9Ne3V9lChoBmgJaA9DCJ2C/Gzk+vK/lIaUUpRoFUsyaBZHQJHt9rO7g891fZQoaAZoCWgPQwh6xOi5ha7tv5SGlFKUaBVLMmgWR0CR7X+3Ytg8dX2UKGgGaAloD0MI0/pbAvAP8r+UhpRSlGgVSzJoFkdAke0D0163RXV9lChoBmgJaA9DCFSthVloZ+m/lIaUUpRoFUsyaBZHQJHsixrzoU11fZQoaAZoCWgPQwjTZpyGqAL1v5SGlFKUaBVLMmgWR0CR8fzhP0qZdX2UKGgGaAloD0MI7NtJRPiX5b+UhpRSlGgVSzJoFkdAkfFVGb1AaHV9lChoBmgJaA9DCML4adyb3+u/lIaUUpRoFUsyaBZHQJHw0ZsKsuF1fZQoaAZoCWgPQwizs+idCrjuv5SGlFKUaBVLMmgWR0CR8FqWC2+gdX2UKGgGaAloD0MI3e9QFOgT47+UhpRSlGgVSzJoFkdAke/ei8FpwnV9lChoBmgJaA9DCOcYkL3e/ea/lIaUUpRoFUsyaBZHQJHvZgAp8Wt1fZQoaAZoCWgPQwjlCu9yEd/5v5SGlFKUaBVLMmgWR0CR9NWjXWe6dX2UKGgGaAloD0MIyJQPQdXo7L+UhpRSlGgVSzJoFkdAkfQtwNsnA3V9lChoBmgJaA9DCNffEoB/KgDAlIaUUpRoFUsyaBZHQJHzqpKjBVN1fZQoaAZoCWgPQwiUhETaxt/wv5SGlFKUaBVLMmgWR0CR8zOIqLCOdX2UKGgGaAloD0MI7C+7Jw9L+r+UhpRSlGgVSzJoFkdAkfK32h7E53V9lChoBmgJaA9DCK67eapDbvC/lIaUUpRoFUsyaBZHQJHyP2g39751fZQoaAZoCWgPQwjMmljgK7rev5SGlFKUaBVLMmgWR0CR95pRoAXEdX2UKGgGaAloD0MIUMdjBipj+r+UhpRSlGgVSzJoFkdAkfby2c8Tz3V9lChoBmgJaA9DCP+vOnKkM+2/lIaUUpRoFUsyaBZHQJH2bzXjENx1fZQoaAZoCWgPQwi4Wicux6vqv5SGlFKUaBVLMmgWR0CR9fgHu7YkdX2UKGgGaAloD0MI1V5E2zE1/L+UhpRSlGgVSzJoFkdAkfV8NYr8SHV9lChoBmgJaA9DCN0Ii4o4Hfa/lIaUUpRoFUsyaBZHQJH1A3l0YCR1fZQoaAZoCWgPQwg9DRgkfRr9v5SGlFKUaBVLMmgWR0CR+nNucc2jdX2UKGgGaAloD0MIlDMUd7xJ57+UhpRSlGgVSzJoFkdAkfnLronrp3V9lChoBmgJaA9DCC0Heqhtw+S/lIaUUpRoFUsyaBZHQJH5SDRMN+d1fZQoaAZoCWgPQwiwcJLmj2n4v5SGlFKUaBVLMmgWR0CR+NEhJRO2dX2UKGgGaAloD0MIFAX6RJ6k/L+UhpRSlGgVSzJoFkdAkfhVOfukUXV9lChoBmgJaA9DCHGPpQ9dkP+/lIaUUpRoFUsyaBZHQJH33Mpw0fp1fZQoaAZoCWgPQwgZA+s4fuj4v5SGlFKUaBVLMmgWR0CR/VWuoxYadX2UKGgGaAloD0MIG2X9ZmK68b+UhpRSlGgVSzJoFkdAkfyt9MK1HHV9lChoBmgJaA9DCGjKTj+oy/m/lIaUUpRoFUsyaBZHQJH8KtSydFx1fZQoaAZoCWgPQwg9D+7O2u30v5SGlFKUaBVLMmgWR0CR+7PSDyvtdX2UKGgGaAloD0MIPZ6WH7jK8L+UhpRSlGgVSzJoFkdAkfs3xe9i+nV9lChoBmgJaA9DCDSEY5Y9yf+/lIaUUpRoFUsyaBZHQJH6vustCiR1fZQoaAZoCWgPQwgtB3qobYP2v5SGlFKUaBVLMmgWR0CSAGF3IMjNdX2UKGgGaAloD0MIw/UoXI8C87+UhpRSlGgVSzJoFkdAkf+6ASWZ7XV9lChoBmgJaA9DCG3GaYgq/PS/lIaUUpRoFUsyaBZHQJH/NoYekpJ1fZQoaAZoCWgPQwgi41Eq4Qnxv5SGlFKUaBVLMmgWR0CR/r+2mYShdX2UKGgGaAloD0MIWYtPATCeA8CUhpRSlGgVSzJoFkdAkf5Dx5LRKHV9lChoBmgJaA9DCPNUh9wMd/K/lIaUUpRoFUsyaBZHQJH9ywX668R1fZQoaAZoCWgPQwjH155ZEqDmv5SGlFKUaBVLMmgWR0CSA1jNpudgdX2UKGgGaAloD0MITYV4JF4e97+UhpRSlGgVSzJoFkdAkgKxNIsiCHV9lChoBmgJaA9DCBah2Aqa9gXAlIaUUpRoFUsyaBZHQJICLZSNwR51fZQoaAZoCWgPQwi2ErpL4qzlv5SGlFKUaBVLMmgWR0CSAbaLXL/0dX2UKGgGaAloD0MIISI17WIa/b+UhpRSlGgVSzJoFkdAkgE6r/82rHV9lChoBmgJaA9DCAVPIVfqWfm/lIaUUpRoFUsyaBZHQJIAwkRjBmB1fZQoaAZoCWgPQwjqXif1Zen3v5SGlFKUaBVLMmgWR0CSBitZFG5MdX2UKGgGaAloD0MIfQiqRq+G97+UhpRSlGgVSzJoFkdAkgWDjrAxjHV9lChoBmgJaA9DCIZY/RGGge+/lIaUUpRoFUsyaBZHQJIFABkqc3F1fZQoaAZoCWgPQwgBTYQNT+/zv5SGlFKUaBVLMmgWR0CSBIktVaOhdX2UKGgGaAloD0MIhVs+kpJe9L+UhpRSlGgVSzJoFkdAkgQNVea8YnV9lChoBmgJaA9DCMpOP6iL1PG/lIaUUpRoFUsyaBZHQJIDlJg9eQd1fZQoaAZoCWgPQwiDhv4JLlbrv5SGlFKUaBVLMmgWR0CSCQxBE8aGdX2UKGgGaAloD0MIQRAgQ8cO7b+UhpRSlGgVSzJoFkdAkghksJ6Y3XV9lChoBmgJaA9DCJc8npYfGATAlIaUUpRoFUsyaBZHQJIH4S39aU11fZQoaAZoCWgPQwgPuRluwKf1v5SGlFKUaBVLMmgWR0CSB2qvNeMRdX2UKGgGaAloD0MIxvmbUIjA87+UhpRSlGgVSzJoFkdAkgbu67NB4XV9lChoBmgJaA9DCBvZlZaRuve/lIaUUpRoFUsyaBZHQJIGdhd+ocd1fZQoaAZoCWgPQwh7Mv/om/QFwJSGlFKUaBVLMmgWR0CSC+5xBE8adX2UKGgGaAloD0MIUDqRYKqZ67+UhpRSlGgVSzJoFkdAkgtGk8A7xXV9lChoBmgJaA9DCGAgCJChY/q/lIaUUpRoFUsyaBZHQJIKwyhzvJB1fZQoaAZoCWgPQwhOYaWCiur0v5SGlFKUaBVLMmgWR0CSCkxxT850dX2UKGgGaAloD0MIVwdA3NUr+7+UhpRSlGgVSzJoFkdAkgnQemvW6XV9lChoBmgJaA9DCAk02NR5VPC/lIaUUpRoFUsyaBZHQJIJV84Pwux1fZQoaAZoCWgPQwhEqFKzB9rlv5SGlFKUaBVLMmgWR0CSDs8h9srNdX2UKGgGaAloD0MIPBIvT+eK8b+UhpRSlGgVSzJoFkdAkg4nfZVXFXV9lChoBmgJaA9DCAckYd9OouW/lIaUUpRoFUsyaBZHQJINpA/s3Q51fZQoaAZoCWgPQwgdy7vqATP6v5SGlFKUaBVLMmgWR0CSDS0knkT6dX2UKGgGaAloD0MIObNdoQ+W3r+UhpRSlGgVSzJoFkdAkgyxCpm29nV9lChoBmgJaA9DCCbGMv0S8fq/lIaUUpRoFUsyaBZHQJIMOE12q1h1fZQoaAZoCWgPQwhJvDydK0r4v5SGlFKUaBVLMmgWR0CSEbd5IH1OdX2UKGgGaAloD0MIXalnQSgv8b+UhpRSlGgVSzJoFkdAkhEP6CUX53V9lChoBmgJaA9DCN9t3jgpjPa/lIaUUpRoFUsyaBZHQJIQjJQtSQ51fZQoaAZoCWgPQwgrpWd6iZEAwJSGlFKUaBVLMmgWR0CSEBYoy9EkdX2UKGgGaAloD0MIcsPvplu2+7+UhpRSlGgVSzJoFkdAkg+abSZ0CHV9lChoBmgJaA9DCOuLhLacCwTAlIaUUpRoFUsyaBZHQJIPIdXDFZR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16667, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 6, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (356 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.2233118644915522, "std_reward": 0.43575948513670804, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-08T03:51:37.002884"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8551659ad5494804938ad0b236de7d98ca888d07d71d1968f00e2525a0c23a25
|
3 |
+
size 3144
|