Initial commit
Browse files- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- sac-Walker2DBulletEnv-v0.zip +2 -2
- sac-Walker2DBulletEnv-v0/actor.optimizer.pth +1 -1
- sac-Walker2DBulletEnv-v0/critic.optimizer.pth +1 -1
- sac-Walker2DBulletEnv-v0/data +9 -9
- sac-Walker2DBulletEnv-v0/ent_coef_optimizer.pth +1 -1
- sac-Walker2DBulletEnv-v0/policy.pth +1 -1
- sac-Walker2DBulletEnv-v0/pytorch_variables.pth +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: Walker2DBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: Walker2DBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 388.34 +/- 289.88
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x7f6db1d8b8b0>", "_build": "<function SACPolicy._build at 0x7f6db1d8b940>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f6db1d8b9d0>", "reset_noise": "<function SACPolicy.reset_noise at 0x7f6db1d8ba60>", "make_actor": "<function SACPolicy.make_actor at 0x7f6db1d8baf0>", "make_critic": "<function SACPolicy.make_critic at 0x7f6db1d8bb80>", "forward": "<function SACPolicy.forward at 0x7f6db1d8bc10>", "_predict": "<function SACPolicy._predict at 0x7f6db1d8bca0>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f6db1d8bd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6db1d8f980>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVKwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxaFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLFoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLFoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAA+t/KVdafPnvfvGLxBcwLwWyEds0popLZpr8ICeP3AtcqFoR2tpwu0ZRsJMv1e+o1v2OrOEDTXlOD7kbgronkMv7PzGzi9QAxFRslGOr/xyr5beC9xoS5OB1JugwtjX4jaqd8ZOxELjuSP9MCH4ho/2b2XrtJBBJ7kehtM9HY+TZhYwfWrrdAa2M+zz0Bz+dPHnfcYT0t8GLcHySgbFp4Kou0lFaswh3Xi90LX7fjca8XnygJkAUsepgyj2MNPGi6bmNcgpmtlsAtyGIUS+MNn4mhdDseyDVKll1W5W14fqHrrbrcs3IBDUw88UxHdlJkxTG96EzdFKs0PvK96gIgO/1x7yWHFbLT2Jz6BcDHuHNUu0iLYX0kC/XC1ebjI6SAHSwHiYAqKuSo4uKvr3XFb78JuKorJqMxKD8Ib5x3X6LKOXNs9nDliGV7mVgYmpCxgzboabOpqPMGoFJodmVIuZjch6AaSlt2ZAJtA5Tmy4ULDsCNnTivVmtgj/wDjNXWbvea14LTCLVWGbiiDMg7lhks+TKTM4Z5/J8gcgP95D2M30M3+Xe12mcZXH+GqMvVoytIZEgtk4FJBhuTtPO+0istqwne+F11AfAoHqErq6bEV10pZSo7rvUXOikxak+bK+TcPqNI28ieEMmG/R7Jj65O85QinI9eHmB54vATfABoJoEGQ1BvkM252Cz1fbp0IcqA1XngrRBKrbVYxE5p/2MyNNZMZuCMRr96lhmtV45uw4HeezlcHgYDVf+I6xQFtYnCLjX3UwlJCuUDbV+zKn8gnPJB8od+Fyx0bhyJlNfs5zy1Mrcbicq2sKwd5cyavNHzAnvEtabhDjwrQVzbKhcgFQiiGAE6U61R4ojCVA86+c2pliHS5Zb+DYzACXgsCc5dUJktq9C9unVbM1Cw+KfISiUj4uQEYvcznoQxGBLNKnjMX602byfcnyvV6Hf+N4Y7/vR6h15S7bRbRuP7ZEOYDPTxwjzWnvMla/W/vOg4AU9SATeuATlLMVWefv/beRl62miCwDuEwKEaQUMprM9J3f2h2OvzV6WG5w+zn7ONxGld38LTK3W0ILx84XjmqodCWNLUeCTJpNS6V5BvXpLB0XdFTcueGVHEMVSyVlq0YSW+h4FsF7BWdB4aR3p+MaUtJ32BNMyiGCAIHVYVYGMyhmfnByJDebAYK6AHffiikzKv/6lJtxkcft2p+23Mp6cEhHtGaCxp81FXS5rMkDsNUSeBYNuEjM3TCDS0etvrO4C/yJL41be1enDL/mUyr+hD2riKSVQDkGwsyCwbzDwPgs3YU4nf5tH56QOOactNpeqIWdEc0fqyHD4VGldKAZAxW3dJxbHHLRAVCca4j38yc+/509qFQGOr+3QqYosAg0iJ/y0rMKBrJzpaIHeKMsqMNn6+qi9p5K9+D33OWyCU+XZe1ZbWvBjNY3Y0MYDHKKxuI7aVHCKwQzK3vtTyi3ok0z7QDlK/xXIn3vlzhAP3wmxafHshQL8RSvFTPRscNPy5YEe3iusBrt5PY7a4KvTlAbrQVZeWAbpot0gPq3N6FBzvNsEwjMkOqsxQKYxatkI3PkA15EVXt5Re0gOf5hzQTv/qLBgqO7FfGjzLonzSITyw4IEp+fq3MSSxQhJNG7VJ0zQRqEQBfTfWbPm3DqeH3Zjkicl9dEoDejhr7KBgjOMg5kJtgeYIXXLnnjjLyMLn06VKAF8XZQ4sD+E0HrwrdPNpCmNGECDzKATCRZlnnGbhz6TyK8pt3cE0CF6G/DBkiHesofFyDN8lDbDkM794fKej86M5y9v2/DxC7pTi20QkPBDMPNNMcvnv4km8Q9rUx1HcBBYS5SDUxS7dqcABo2+ir9kD5W3WYik3iEWFV/XaT+WnQ6KpYF+AEuDrq069sJvMdSPlElujXDcXwJa8OdvcFvfvKH1hkrL3C4iPtwjzh6YvEfo/mhkKu4OdIJDt9T9PcD3zJQqLVn0X4NWzU9kzyV9a8h0Hec1BRT61H2E7hp9sAkKTBTjUnvX0YvKUy4QKJsIun2S1q09VM/Q/ZhnFVPYSR4PLY7ybONIsCf+MeR//Yg7Gb2iSqAf4iIfsI833Tr6eCUKOhJo4SgvSxitCFA/sTgO0dEBI8dZcHgSGLBI8A9rus8ma/MbNFFlNX3SUoyx7siSLtVOq9cJJ1eahZgzTyAxwhI4Pk9Lp9nvKm57vVtT7mbk92ItaRu4BHwzQaNFveRyvzuHefIYDPxN9KvCt0yy/+RV547GNAMzLDQ8jgd0IpPrB7Yabdezs2PH7YFGzyTirfFB1dPZrnlAuWhXDBhaKCMrQBM+pQeVYk4jELRjIrot37rGQGmPpSyHvH2G+jmOxgHl2dDamSRR5CpewoB7MesHio1WFbLrdUpLJJ5d0hf9NZ1ACryrJ5uyiqZ+mlXYzyI8WFdiNvoPiOoTghwotpzkN2S8/iSsQmWxiK2VsX5MQQq49+egfT3WPLBcRbwEWIXrmmkeE5k16zFJKxzz1KI1Ha6ZTP8VfW+AC0MVt9LKnxMAhYvHJwCrGw991SAySHnGXWjFtkLLcWcCN3Id5il6g/mI0WJDgFhLq8hXFNcPZhFvaTuN7s4SzBVvtU+bMZ10eAjXz348cWeOE4HtH50oX5nLXPlqPnYDr5A0TTUUWS83Th5j1eu9IUuiMVET+csDKD/oFq0eL03dUPN1DZiTmNu1nfGG+A/4wDlj/UYXhsGBeJ3hsRuch0DkHmn8P6jQ4/OSCwIh7K1aPDRXHObvnQjP4fzvSxdtOkoo/423wlqg88iVXB45GRDpPMO2LdxmkidMs00UG+K2QDEbNm3i66X5uTZX8x/6rbEokVtN5mSrWIfiAXjStC4RP9TujtOQfatyJtWUljNIyTbqMyO8vPU1DPxPcqe+HGG8//N4HE0TRV2T4BtACBhuKZB0XnGKnXxKity0flGduHk2SBvhOcbtMEHubfj/7ybNHTLEQN0bvbImqEAuzGZJ1A2nDOVeZiqdPU6BAlCHkMR6dFmCDLccsxEhewSdUsXPX0eCRY320HV95G/zjf16pUBFPzYUnvm54f3jNeVvS0KMBPbAhEhBqaNnhKAIimGUwJO0WodP2xKlhCgMUVKV/Rf5scEi5WXfcbjBft4yvYDhHcT5Udkok7ajnAiKYbsrz+88wxLbPxZEhFhvwUK1erVBNJrhIos+PZIGxSfD1Gt8bK99WGN5EfJwOAg2VSoPEchJ8AW87M/1JQdl7ROUa8OWtatdRpQqd9PcWcEAxysHOpCkbRmzobvZeF1YaSHIwrFzGf85Hk3GbmT2GC6kDuOI3ZDbuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNQAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 155000, "_total_timesteps": 155000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679527655675161912, "learning_rate": 0.001, "tensorboard_log": "value_loss", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAACwjPr8AAAAA7rrLNsivF74AAAAAPdJOPgAAAAAJCF6/Xiw/PgouNr/bvFW/AsjNPk0wwD4aYQC++f+bPjtaLr9FjzK/aOusPtlUBD8mmh6+/0C/PmKJ1z45Wli/AAAAAO66yzalO1s9AAAAAIXMrT4AAAAAS/ilvwZq/z6B4ho90AVHv36mFj6mP5q+A9aGveWigL2hRCE9R18rvyCIAz61URs/qPirvf9Avz5iidc+OA5DvwAAAADuuss2wjTsPAAAAADCapU+AAAAACYzbr/eEWW9TWl5vfFYVL/AgIM+YdgFP/W5kD0ozT8+K6dTOA/KL7+9jwA+X4EdP7LYnb3/QL8+YonXPtX8PL8AAAAA7rrLNvXpLL4AAAAAXvKWPgAAAADGE26/86QevuWsET2gdk+/bxoWPnrcDj+avAO+kolkvc2h9DyRSzW/uWIJPuXUHT89ube9/0C/PmKJ1z6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAALpKpL4AAAAAAACAP9I3i7wAAAAAiUjXuwAAAAA7bki/+pdwP9Y7Sb6KPIi9JsWAPXqZXz8q2ya88pdfPzLnSL5fWWW9LkaIPZxwdz8+rXK8AACAPwAAgD+vx6q+AAAAAAAAgD89QiY8AAAAANvyIDwAAAAATmBjv+cAgD/BgnG5fDoQvaBJwjsjRBg/X6iUOnRgQz+dbD+6F8gqvSrzCzy3CoA/3aePugAAgD8AAIA/VoKlvgAAAAAAAIA/tJ/fOwAAAACX0oc7AAAAAP5kTL84nWQ/n6nVvJwtgr1idvk8UCVvPzTk3Ty3lFY/ssE6vFLGTr00j/078HOAPySBeTkAAIA/AACAP+EBpL4AAAAAAACAPy0TorwAAAAAP3+TOwAAAABNXUy/0rlfP/u+Vrpvylm96V++O9Dbcj+vETG8WepDP57yWLvMo3u9++clPKSDgD+0kBC7AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_episode_num": 647, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHhuGixmkFiMAWyUTegDjAF0lEdAcwgYwZflZHV9lChoBkdAf6HzasZHeGgHTegDaAhHQHMbhHLA57x1fZQoaAZHQICnv/vOQhhoB03oA2gIR0BzH5nOB19wdX2UKGgGR0A9eUdaMaS+aAdLl2gIR0BzRJQqI7/5dX2UKGgGR0CAi+LlV94NaAdN6ANoCEdAc62fhMrVfHV9lChoBkdAhBchE8aGYmgHTegDaAhHQHQAji83+/B1fZQoaAZHQH/+zASFoL5oB03oA2gIR0B0FA4YJmdzdX2UKGgGR0CGojSrHU+caAdN6ANoCEdAdEAwMYuTR3V9lChoBkdAhAPAtWdVemgHTegDaAhHQHSn6qwQlKN1fZQoaAZHQHnedJnQID5oB02oAmgIR0B0q6bDuSfUdX2UKGgGR0CCeGdSVGCqaAdN6ANoCEdAdQ6yIYWLxnV9lChoBkdAghAjU3GXHGgHTegDaAhHQHU4mattALR1fZQoaAZHQIHlTzyz5XVoB03oA2gIR0B1n1wbVBlddX2UKGgGR0B650wJw84haAdN6ANoCEdAdaMDJ2dNFnV9lChoBkdAguZhX8wYcmgHTegDaAhHQHYIxiXpnpV1fZQoaAZHQH5PdknTiKloB03oA2gIR0B2MfWTX8O1dX2UKGgGR0BbF5KnNxEOaAdL0GgIR0B2O9deIEbHdX2UKGgGR0CDO/wob4rSaAdN6ANoCEdAdpwNI9TxXnV9lChoBkdAg678+iaiK2gHTegDaAhHQHafvbXYlIF1fZQoaAZHQIL1WYIBzWBoB03oA2gIR0B3K0uM+/xldX2UKGgGR0B9NhMvh60IaAdN6ANoCEdAdzVUZNwiq3V9lChoBkdAgQt/x2B8QmgHTegDaAhHQHeT1JUYKpl1fZQoaAZHQHv8STQmeDpoB03oA2gIR0B3l6+/QBxQdX2UKGgGR0CEevKlpGnXaAdN6ANoCEdAeCaAQQL/j3V9lChoBkdAgrLEkrwvx2gHTegDaAhHQHgwmlVLi/B1fZQoaAZHQFpN7fpD/l1oB0t5aAhHQHhOg9vCMxZ1fZQoaAZHQIOWBLwnYxtoB03oA2gIR0B4jgEt/WlNdX2UKGgGR0CDgCURFqi5aAdN6ANoCEdAeJGq8UVSGnV9lChoBkdAUKBvES/TLGgHS2poCEdAeKuC7K7qZHV9lChoBkdAgu9XS8an8GgHTegDaAhHQHkgG2G7Bft1fZQoaAZHQIPr0rK/201oB03oA2gIR0B5R4psoDxLdX2UKGgGR0CDOGj/uLJkaAdN6ANoCEdAeYZ1x82Ji3V9lChoBkdAfj5Y7q6e5GgHTegDaAhHQHmnBmkFfRh1fZQoaAZHQIJ5TUCq6vtoB03oA2gIR0B6GJWLgn+idX2UKGgGR0BVAmhVU+9raAdLY2gIR0B6MIZwXIludX2UKGgGR0CErF/NJOFhaAdN6ANoCEdAej+qgAZKnXV9lChoBkdAUnBzYEnss2gHS19oCEdAeke26ClJpXV9lChoBkdALia2OQyRCGgHSzloCEdAelZrMkhRqHV9lChoBkdASstGEwnIAGgHS69oCEdAemxs7+1jRXV9lChoBkdAgHnjwhGH6GgHTegDaAhHQHqA5Mg2ZRd1fZQoaAZHQITVYGhVU+9oB03oA2gIR0B6nkOWjXWfdX2UKGgGR0AsZpBX0XgtaAdLOmgIR0B6rGE4//vOdX2UKGgGR0AhPxkNFz+4aAdLbmgIR0B6xxOxjawmdX2UKGgGR0B6an5/LDAKaAdNbwJoCEdAeu/7vG6wuHV9lChoBkdAZbg8dPtUoGgHS/ZoCEdAewMkk8ifQXV9lChoBkdAhCmwf6oES2gHTegDaAhHQHtjau0TlDF1fZQoaAZHQIUrNZ3cHnloB03oA2gIR0B7dxlkH2RJdX2UKGgGR0CC6qFUyYXwaAdN6ANoCEdAe+bd4FA3UHV9lChoBkdAhPjcQAdXDGgHTegDaAhHQHv8EWAPNFB1fZQoaAZHQGVsQV0tAcFoB01hAWgIR0B8Us3Ov+wUdX2UKGgGR0CC0wRYA80UaAdN6ANoCEdAfFoQJXyRS3V9lChoBkdAcecPfbblBGgHTQ4CaAhHQHxppQUHpr11fZQoaAZHQIQ3iDAaef9oB03oA2gIR0B8bfgXMyJsdX2UKGgGR0CDWqPJ7sv7aAdN6ANoCEdAfUwd1MdtEXV9lChoBkdAg93bPQfIS2gHTegDaAhHQH1TpPl+3H91fZQoaAZHQIJnI6S1Vo9oB03oA2gIR0B9Y1oYekpJdX2UKGgGR0CCd6fOD8LsaAdN6ANoCEdAfWfEfkmx+3V9lChoBkdAUVYWbgCOm2gHS+JoCEdAfY2cIJJGv3V9lChoBkdAa1ITTOPeYWgHTWICaAhHQH4AMCxNZeR1fZQoaAZHQHWAkehf0EpoB03oAmgIR0B+HJtDUmUodX2UKGgGR0CChAdBBzFNaAdN6ANoCEdAfkUYRujynXV9lChoBkdAXckkKNQ0oGgHS8JoCEdAfk3TlT3qRnV9lChoBkdAeFJTYNAkcGgHTVkDaAhHQH5irSeAd4p1fZQoaAZHQIPyefGuLaVoB03oA2gIR0B++EPtlZoxdX2UKGgGR0CCrdV/+bVjaAdNbwNoCEdAfykWdEsrd3V9lChoBkdAgsN2dupCKWgHTegDaAhHQH8++IRAbAF1fZQoaAZHQITJpDeCTU1oB03oA2gIR0B/WjyNGViXdX2UKGgGR0B2GfrC3w1BaAdNNgJoCEdAf4TGucMEzXV9lChoBkdAak+l3Qla82gHTZkBaAhHQH+iOcH4XXR1fZQoaAZHQHU5ryxzJZJoB01eAmgIR0B/vL7TDwYtdX2UKGgGR0CF6t+zdDYzaAdN6ANoCEdAgCg6i0v4/XV9lChoBkdAgtHmx+rlvWgHTVYDaAhHQIA6mX9itq51fZQoaAZHQITEv+OwPiFoB03oA2gIR0CAPc9alk6LdX2UKGgGR0CFsIgQHzH0aAdN6ANoCEdAgFryZ8a4t3V9lChoBkdAeEZW56MR6GgHTVoCaAhHQICIp3NcGC91fZQoaAZHQHQgsOXmeUZoB03SAWgIR0CAk+gMc6vJdX2UKGgGR0CH3McfeUILaAdN6ANoCEdAgKQHa37UG3V9lChoBkdASD2z8gpz92gHS2toCEdAgLG9nK4hEHV9lChoBkdAhox+TV2A5WgHTegDaAhHQIC3RE4Nqg11fZQoaAZHQHq1nEuQIUtoB001AmgIR0CA2inQY1pCdX2UKGgGR0CIqbg9/z8QaAdN5gNoCEdAgQM/O+qR2nV9lChoBkdAXhs/KQq7RWgHS59oCEdAgRdV9nbqQnV9lChoBkdAhl+EVN5+pmgHTegDaAhHQIEtBWHUMG51fZQoaAZHQIWmPKU3XI5oB03oA2gIR0CBMizHjp9rdX2UKGgGR0B5ZFbY9Pk8aAdN6gFoCEdAgVOIJAt4A3V9lChoBkdAiKFTo+wC82gHTegDaAhHQIFU7tZ3cHp1fZQoaAZHQHySbq2SdOJoB007AmgIR0CBeMc/dIoWdX2UKGgGR0CHXPjG1hLHaAdN6ANoCEdAgahOlGgBcXV9lChoBkdAhRIxKxs2vWgHTegDaAhHQIHPNwo9cKR1fZQoaAZHQIhGMmMOwxFoB03oA2gIR0CB0JYhdMTOdX2UKGgGR0CHcuwosqaxaAdN6ANoCEdAgfQdNN8E3nV9lChoBkdAh8sU/wAlwGgHTegDaAhHQIIjKgGr0at1fZQoaAZHQITcbMPjGT9oB01mA2gIR0CCOl1nM+vAdX2UKGgGR0CGPs3/giu/aAdN6ANoCEdAgky1pTMq0HV9lChoBkdAh6+UxubZvmgHTegDaAhHQIJvy1qnFYN1fZQoaAZHQIi3oYUFjd5oB03oA2gIR0CCn2bG3nZCdX2UKGgGR0CItD/4qPOqaAdN6ANoCEdAgrboV2zOX3V9lChoBkdAhnJiBoVVP2gHTegDaAhHQILIItthuwZ1fZQoaAZHQIcs18LKFIxoB03oA2gIR0CC60I1tO2zdX2UKGgGR0CJW4GvfTCtaAdN6ANoCEdAgxtRMN+b3HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 38725, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f6db1ddb550>", "add": "<function ReplayBuffer.add at 0x7f6db1ddb5e0>", "sample": "<function ReplayBuffer.sample at 0x7f6db1ddb670>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f6db1ddb700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6db1dd4ec0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -6.0, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x7f6db1d8b8b0>", "_build": "<function SACPolicy._build at 0x7f6db1d8b940>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f6db1d8b9d0>", "reset_noise": "<function SACPolicy.reset_noise at 0x7f6db1d8ba60>", "make_actor": "<function SACPolicy.make_actor at 0x7f6db1d8baf0>", "make_critic": "<function SACPolicy.make_critic at 0x7f6db1d8bb80>", "forward": "<function SACPolicy.forward at 0x7f6db1d8bc10>", "_predict": "<function SACPolicy._predict at 0x7f6db1d8bca0>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f6db1d8bd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6db1d8f980>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVKwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxaFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLFoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLFoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAADVcfhCoJ/MMixCD1V03qak/UePDMUdfW40Xke3rkq6byBjwC7UILdh+FP9V9cHuXzyYNTgUjj/z3spNKqWY1TuNxim6Wug5I8B3yAe+9G6YBhkBHAE7K7Dz3T4sWs8fWEhMaYRCfrwjWu2AHcmZaDDl64yHz64liK8A/ZyjruRg2qb9VFhHs0g7fbNqrLA4PsiUUXnLzHKqkZt2+mz7lbAAFjQU17weoAonxn+4BQlLbHwG+9ZjSBv1oinQhtt1spfKWdfpiOHvqblbkXqWnsRGxtmGyLhv/wa+0XdS7nQWVfobwDGtej9L0wSaFI1gJY+irCCaq8xBIMEEg9Fd41sbFMqyNaa76UnseJZJAMEUL44+Fc4/wAIAD4uM+qzT2TbmEe8dzltmn4NgHH30zJoPll/PPqB3MjitU7Qce37mQM7eHr066BHDZBLFbCAxFSbj2OqclozjAYpse4skkJoUKEjcB9wHAulmFO6rt26AgxCFM0fTTe9/i+B1WVU2Y/mp0HmKMmuJ8kBZiR+8rbiL36pCRdbPaYQRqFL5MwykX7UKMqPmGi40Y1kYnMWrCw/qn/SjM8c12ZrtBNMxULryUfwo2qvR9GCeRFdGAnVwNKtpTziJeR4Nsbn96+/OcbXYSTVKYQ2I8VtOLTzrZH3j5e6Hfd1sOf1UyEdRD59HG2D3VsqlB0aROam7LQ0fNXbAL+f/n2xXtehEYOHh3BHiRbcUMOYWRgMLV9JOHthH5PXyggbmZMeHY8WOauI1vvtdI92EQ3fJ5p9uurtARP5f7w2q8ksqd0P2YtGs5rdv7ubRgqvjtPsqDZSXZ8+OPIjOL8quMrQCEKsHQ22eCVGm71E5+yz/28QmPfvEW2FS2OO7CMX73LD1OQoWugoIllF7zWh/QFaTVUK37jME3qriOHDAvpy/eEpod4ZpJaV4vZMvqkk271kMWFF6xxXR1LSgcaYyOd3xKgTmRu7Vw70YmpPCYuhnVEOYvtz7sEpNmx6pdu6le+rueJJ/DY2Cw9LxbeV8k0Dl/RqiDOHt58VkxnwkV887xSJdLOJxAKjry/+AO/WeM4Noyit2H43csFBFdbAZjqEqFOk6NGUqSdVJi7b0SUMcvC8URcEDQQRAdTIYgif+M52B5WnwSx1sYC2Uu56lO8NwWKv00NJpX/uRE4y5GyQv3kvcfoOnskD9d2nqDrG9D2K6znhPhd2FanpyS4BBca3M04/q+GluwjLyEdIYrT2o+kfRtbXyGyBzvyE7BRNIOiQZNtEBx3dDlDcZLUlQs2z8hg8bchfouXwREgYyNXcTuh1OYA+R/7+o23yvwue7xuSumHIGT0AKJ40JFM4mK1Xc3ezn21/Y6/wFYNxJedLgTSW2puzPK2IKAAujOWHPj+GvJcJELhzJaR+syTamXRQe5S6nERDjvswxS1sirEsFYUdjEOyF48rvOxE1JxHeIWKbWWUrRAdcmNTBiZIHhAYmanJL3QbqOjFJLhBmIPV1Oc0ufd9AcuODiuRPqNcP/Yq3SUXhY9LuvwitkSmkzKM3IB0wh+LLUYhEp13kH35XkolmxBj2vWmjA/+uY7rAbkIMY4MVM3Q/lk850tS2ncViwDndSzSaCjbU/0fVqEuqiOIXhOTdpULQY5ftrmW+7xYJMiy5T2adRzygHEriUa0wqNdjssP4K493N8PkqIZ89v4oAXZXU7VxHkIZbuBoXaUgS+YdyNhhAx6zn2Ffgt+9KYKV41TMg4JYVFTUk3gzA7fzUQ5rtYKOum072ZvXekpAceiq+huvChgyvWgsTJq/m0m6ci9DwagrGamat7MRHOYgk0+zP25+fCYY0HK/ZfIASAAUhP/UlIPE28yVhnlcyA0OQwnyZqkjo3vC9XkyMrQ1R73Yu0kJmsNBmb9TjMZy+y6n3ZGnOi6+Cpk9e0RqLtpYI1aaXAeSsh+k7Qevtl+bsqSQPC6Ygvk47yWLuEGSpZTcfVoeEfxQiNR4bVLQ71okfaWbeq0HP4mSiPuc8GbhpOkFJ2sY8jBHqkM3/ZeWV2SoTEQgC+Xc4xX9V7Y++SZm5ogOrLbEebXaU8SBlJQTyQZeWmXPRCOqVygOYGQJSkfvQSD2WiSx+MW13qMwM3Ewkc5TmjNawMo2BCjzTsVFHQh/+xnqZcoEp3U17w7jAVAzsL0i2hjofHjHy1Jzdy5HFSR7Wgc4/sKxBXs50Kit20vaguvva8b07G+q4NBeYvwQgBcDP3rWb53xyghkPM9xss8fkfevVvDP8gCkyi5hy3Hce1uT6SjTyqPYX2AZMxa0RbjwMPSzIkKxlnx7pETC2+c8ljgxobiBo3weKI1ahyuzyWQ5C3/g1BPm5oJvmZGjj6LYKxLkRYPy7oje5oBdqm5JcccvidqPOwV0M3avJ7YJ1HfKbPEQxDXMy3aJXvrkPR77nsI3sRYmvShTvW4GDJAyAWUtAddRZcK8mLC8X/8ITEIBIwqF0ticcIhudQU3qDRt2mfOI6j8ds/rK0cvRGT1aehyXBxgRLeLiiIL5vDvX7bjdFdeCUAts71yzcZx5rojOFz4nFWPphQ2fJS3Fc7a5Kk4c9u8rccUgDdpRQ9MVWtl5VWHwZ2nzJMky4rSdGjHtHYkbO8JxVtcVRUdZwhzHXN4MQ7VrRK58ce1ZLf1OI3k2pffqP7dKjT+7D8cn4ajOWdwb1K8qPmY5ux3h2xL6FD1I5i5nabr5di3W9qTtIkxy/hBssQokLQp2zZ3iLG67HSJ8bzeIxiSKZk5wUrguVL7+3ItT+iVcnuYCXgH3kDhWuLTAslWhKxDKDM5fWeDUK4u5M6Kv/BfGIuUMWRvfs+TpHv2OZex8YpC915a2dxTpypjMmhDhhGQj5w1NXE3LeXN3l+9VhP1qqjsU5L2Vgy2cYVvBcRYRUJhOnVu/XUYsTrnZuyxS4mPMN4fDQ9H8ElxCdXYQ72f4QwIRD+TlwWxe1LhPdW//0PrP1iqooLDE09tpNLaHIC3DUOe54k0Xntpt1IX5GcIyNZheVZ3D0YKjzIvivyxIF/D5WUvgYXbdtYhgiu4pBmi3lkmVWo5PRoqwS/aOIonqj18qknvIR5I7Tx87eY6DfKzlaat0TrMMcjTPNMXsrafUls4dvYE6kKUmKdG9p1lz3EpyUi5gos8kf3KmloW1UGVFzzQP3XFzP9CRDikZJELgcStm9mqacvJ+dg+TTVdb2/zahze6jmiv7C9WXc0g7QaNQ8X6aggK+DOiuymGcAT4AyzOZnAxw1XirGLp9A4HYtiMxzI9xiYc5GunozXwVybzXVXI3CK7CiDCPrD5YsM88rSadPl66UaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNQAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 155000, "_total_timesteps": 155000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679528999392269254, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAANUvML8AAAAA7rrLNq/DFT4AAAAA0BHdPgAAAADS+Jy+DR8jPy/OHz3/wUK/RoAaPsKPQj8+WUu97oWjwFgSgj0Zg6Y/S5b4PVVUzD4eJz6+tbPoPt1xxT6VfL++AAAAAO66yzbhBUm9AAAAAOuUdT4AAAAA2gzUvl3On8BRb5E8gyCzPxiMtD2zvKI+87RbPpdrcD8QggQ9PemmP9jYBT47GoO/3vDevrWz6D7dccU+KtNCvwAAAADuuss2wNUPPgAAAACzEOM+AAAAALwtyr5BTSQ/xGCyPLISTb+7DiQ+nGFDPwTZUb2bO63AGMBIPdhfrj98vQQ+Ks6ZPkhFWb61s+g+3XHFPlkiPr8AAAAA7rrLNh3f7j0AAAAAIJ7ePgAAAAA1HsG+VhwjP/rCHz3aaEq/Wn0aPn7EQj8WzWS9+WSpwJQ6gD0nfaY/nUX+PUB2qj5sCTi+tbPoPt1xxT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAOsAmb4AAAAAAACAP2BA3DwAAAAAxpBiPAAAAAAOhRi/YgCAPzylDLcfvWO9jpRNPJwvgD86kBc7kuwavPOaMDx+CYA/qEYzu3yYUz+08tG8AACAPwAAgD+SJYS+AAAAAAAAgD8954u6AAAAAIAhLLwAAAAAidsfv4odMz33Dvu7JhaAPwqAtbtUz1I/YxKCPbIPgD8L4Xu56jyAPydil7nJa14+ZnijvQAAgD8AAIA//9WdvgAAAAAAAIA/jXbVPAAAAAB843o8AAAAANyKHr8LGoA/PKDLu1w4mr3uq3k82FmAP/nz/jrKOXa96C+5O8z+gz+JARa63MdIP/yCAL0AAIA/AACAP6ienL4AAAAAAACAP4aHuTwAAAAAhthoPAAAAADXVR2/JwCAP9IwTbclzY+9E4dNPDk6gD9v7WQ6DDMkvVFkKzyABoA/EJEDu5xYTD+9VMe8AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_episode_num": 830, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG1cnB1s+FGMAWyUTasBjAF0lEdAiSWyGJvYOHV9lChoBkdAOfwAMlTm4mgHS2ZoCEdAiS2+g13t8nV9lChoBkdAhurm+sYEXGgHTegDaAhHQIlJ1IZqEe11fZQoaAZHQH7nuE/SpitoB03oA2gIR0CJcqe7L+xXdX2UKGgGR0B59jEFW4mUaAdN6AJoCEdAiYF0Cih37nV9lChoBkdAhkQ5flZHNGgHTegDaAhHQImprf1pTMt1fZQoaAZHQIKxJLytmthoB03oA2gIR0CJw/9c8kledX2UKGgGR0CAEMmCyyD7aAdNdgNoCEdAid8jHn2ZiXV9lChoBkdAdL0NbC79RGgHTb0BaAhHQInfnhIe5nV1fZQoaAZHQHI21nRLK3doB02YAWgIR0CJ9U2YOUdJdX2UKGgGR0CFlVaGpMpPaAdN6ANoCEdAifvY1He7+XV9lChoBkdAhfiwKa5PM2gHTegDaAhHQIpZerXDm8x1fZQoaAZHQIXGOxB3RohoB03oA2gIR0CKWf/YraufdX2UKGgGR0CE3S42jwhGaAdN6ANoCEdAinDNVBD5TXV9lChoBkdAhHBs+FDfFmgHTegDaAhHQIp3ALNOdoZ1fZQoaAZHQE4eocaOxSpoB0uEaAhHQIqHGXmeUY91fZQoaAZHQGlQ+sgdOqNoB019AWgIR0CKnwjMV1wHdX2UKGgGR0B6tnJDE3sHaAdNegJoCEdAiqfXiBGx2XV9lChoBkdAfBrrlNlAeWgHTYECaAhHQIqoPi704BF1fZQoaAZHQIdyNlNDc/NoB03oA2gIR0CLAY+r2g3+dX2UKGgGR0CH0b029+PSaAdN6ANoCEdAixltTtLL6nV9lChoBkdAht2p0OmR/2gHTegDaAhHQIsigHTqjah1fZQoaAZHQIdqwcFQl8hoB03oA2gIR0CLIuZ4wAU+dX2UKGgGR0CG+BajesPraAdN6ANoCEdAi3z4+B6KL3V9lChoBkdAhtiuAAhjfGgHTegDaAhHQIuV+5avA451fZQoaAZHQIYp5LIxQBRoB03oA2gIR0CLnrSP2f03dX2UKGgGR0CGvFfw7T2GaAdN6ANoCEdAi58XTmW+oXV9lChoBkdAYaSPnSv1UWgHS/5oCEdAi73gRChN/XV9lChoBkdAh1Ira24NJGgHTegDaAhHQIv4QJXyRSx1fZQoaAZHQIcb0zZYgaFoB03oA2gIR0CMEG+fRNRFdX2UKGgGR0CGzaK64Ds/aAdN6ANoCEdAjBkrFGXoknV9lChoBkdAhhuHrpqynmgHTegDaAhHQIw3/gWJrL11fZQoaAZHQIaUB00WM0hoB03oA2gIR0CMcvu76Hj7dX2UKGgGR0CG7Ycz67/XaAdN6ANoCEdAjIrg4ffXPXV9lChoBkdAhtrGdI5HVmgHTegDaAhHQIyTngzguRN1fZQoaAZHQIOlJc3VColoB03oA2gIR0CMst2FFlTWdX2UKGgGR0CDodCb+cYqaAdN6ANoCEdAjOzsRxtHhHV9lChoBkdAhgsFQuVX3mgHTegDaAhHQI0E3Tuv2Xd1fZQoaAZHQIV+IHE/B31oB03oA2gIR0CNDZR4QjD9dX2UKGgGR0CFoQqrilzmaAdN6ANoCEdAjS2EsJ6Y3XV9lChoBkdAhKrl8PWhAWgHTegDaAhHQI1mI20iQkp1fZQoaAZHQIXf52St/4JoB03oA2gIR0CNfquA7PpqdX2UKGgGR0CD5pIDHOryaAdN6ANoCEdAjYfMPBi1A3V9lChoBkdAhjGcqWkadmgHTegDaAhHQI2m1SS/0ul1fZQoaAZHQExnEv0yxiZoB0uLaAhHQI236djG1hN1fZQoaAZHQIKyDftQbddoB00kA2gIR0CNyLpwCKaYdX2UKGgGR0CGh/jghr31aAdN6ANoCEdAjfn6KUFB6nV9lChoBkdAhtbphOP/72gHTegDaAhHQI4CvPu5SWJ1fZQoaAZHQIWWDs6aLGdoB03oA2gIR0COMldpItlJdX2UKGgGR0CGzPPjXFtLaAdN6ANoCEdAjkPQNsnAqXV9lChoBkdAh1lKesgdO2gHTegDaAhHQI50l6cAiml1fZQoaAZHQIasqSV4X41oB03oA2gIR0COfWfBeokzdX2UKGgGR0CExLhtLteEaAdN6ANoCEdAjq8ooNNJv3V9lChoBkdAgxG40VJti2gHTegDaAhHQI7AJcs189h1fZQoaAZHQIZvrUiILw5oB03oA2gIR0CO8GgNgBtDdX2UKGgGR0CCjcXPZ7HAaAdN6ANoCEdAjvk9GAkLQXV9lChoBkdAg4W/eLvTgGgHTegDaAhHQI8rP3BYV7B1fZQoaAZHQISOf6ZYxL1oB03oA2gIR0CPO/J/XoTxdX2UKGgGR0CFEwJemelLaAdN6ANoCEdAj2wmygPEsXV9lChoBkdAhNl+3QUpNWgHTegDaAhHQI91oA80UGp1fZQoaAZHQIYntIbwSapoB03oA2gIR0CPpgOgg5imdX2UKGgGR0CFF7Rv3rUtaAdN6ANoCEdAj7be8Gs3hnV9lChoBkdAhBWIE0SAY2gHTegDaAhHQI/oIEhaC+V1fZQoaAZHQIRdIp2ECeVoB03oA2gIR0CP8NA6+36RdX2UKGgGR0CFOEP1ct5EaAdN6ANoCEdAkBDc+NcW03V9lChoBkdAg2/tTcZccGgHTegDaAhHQJAZrD2rXDp1fZQoaAZHQGmeSN4qwyJoB00iAWgIR0CQK/Cih37ldX2UKGgGR0BKL4DcM3IdaAdLNmgIR0CQLzLZBcAzdX2UKGgGR0CDDoM2m52AaAdN6ANoCEdAkDJJwbVBlnV9lChoBkdAgwQwQtjCpGgHTegDaAhHQJA22qPwNLF1fZQoaAZHQFLNvnr6ciJoB0tfaAhHQJA4PVG0/np1fZQoaAZHQECz8l5WzWxoB0sqaAhHQJA6yQp4KQd1fZQoaAZHQFJwKD0163RoB0tLaAhHQJA7Ycp9ZzR1fZQoaAZHQEPbvYODrZ9oB0ssaAhHQJA9c+B6KLt1fZQoaAZHQIO1wdjoZAJoB03oA2gIR0CQT726ClJpdX2UKGgGR0Bwp8+C9RJmaAdNIgFoCEdAkE/tbkfcOHV9lChoBkdAgm9gc1fmcWgHTegDaAhHQJBtpqO938p1fZQoaAZHQEYeziS7oStoB0uDaAhHQJB1uqlxffJ1fZQoaAZHQIJXD7Q9ic5oB03oA2gIR0CQeeRnOB1+dX2UKGgGR0CHo/j/+85CaAdN6ANoCEdAkI4XMyJsPHV9lChoBkdAgtBplar3kGgHTegDaAhHQJCORq33HrB1fZQoaAZHQGtVIxgy/K1oB00iAWgIR0CQn5Yzi0fHdX2UKGgGR0B9JAQI2OyWaAdN6ANoCEdAkLPNvXK8tnV9lChoBkdAgfEXIU8FIWgHTegDaAhHQJC3xX+2mYV1fZQoaAZHQIFdO9pRGc5oB02+AmgIR0CQysrdWQwLdX2UKGgGR0CHovZFG5MDaAdN6ANoCEdAkMt5PEbYLHV9lChoBkdAewM8jAzpHWgHTT0CaAhHQJDuPMEA5rB1fZQoaAZHQINvky+HrQhoB03oA2gIR0CQ8TCbMHKPdX2UKGgGR0CIeQAlOXVtaAdN6ANoCEdAkPUpOBUaQ3V9lChoBkdAYojcAzYVZmgHS6poCEdAkPiOkgwGnnV9lChoBkdAguQolD4QBmgHTegDaAhHQJEJBZs9B8h1fZQoaAZHQIh/4xWT5ftoB03oA2gIR0CRLo6wt8NQdX2UKGgGR0CHPywQlKK6aAdN6ANoCEdAkTKEc81XNnV9lChoBkdAhyDso+fRNWgHTegDaAhHQJE2AvL5h0B1fZQoaAZHwDJ/aYeDFqBoB0tIaAhHQJE3Brbg0j11fZQoaAZHQIh57961LJ1oB03oA2gIR0CRRtAz544ZdX2UKGgGR0CIRb0EovzwaAdN6ANoCEdAkWvBywOe8XV9lChoBkdAiDMXEhq0t2gHTegDaAhHQJFzQI/qxC91fZQoaAZHQIf8NfReC05oB03oA2gIR0CRdF/axoqTdX2UKGgGR0CHhu/Y8Md+aAdN6ANoCEdAkYROhbnoxHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 38725, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f6db1ddb550>", "add": "<function ReplayBuffer.add at 0x7f6db1ddb5e0>", "sample": "<function ReplayBuffer.sample at 0x7f6db1ddb670>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f6db1ddb700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6db1dd4ec0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -6.0, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 388.33882955648295, "std_reward": 289.8754271998194, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-23T00:00:18.314438"}
|
sac-Walker2DBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ac9f2d0eeaa29f445d29758f777b3d1ea9c6c436640680d576e0091ae8b1cfb
|
3 |
+
size 3297691
|
sac-Walker2DBulletEnv-v0/actor.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 604573
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b41ce77c81996adf4352311506e290d8416d2ffdefed7e1072d29b2bbf5e1c5c
|
3 |
size 604573
|
sac-Walker2DBulletEnv-v0/critic.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1185273
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be136461bd94dbb916f8ad10f313b5c8641ed99cd0ab18f8673831749f2968e9
|
3 |
size 1185273
|
sac-Walker2DBulletEnv-v0/data
CHANGED
@@ -35,7 +35,7 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
-
":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////
|
39 |
"dtype": "float32",
|
40 |
"_shape": [
|
41 |
6
|
@@ -52,16 +52,16 @@
|
|
52 |
"_num_timesteps_at_start": 0,
|
53 |
"seed": null,
|
54 |
"action_noise": null,
|
55 |
-
"start_time":
|
56 |
-
"learning_rate": 0.
|
57 |
-
"tensorboard_log":
|
58 |
"lr_schedule": {
|
59 |
":type:": "<class 'function'>",
|
60 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
61 |
},
|
62 |
"_last_obs": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_episode_starts": {
|
67 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,15 +69,15 @@
|
|
69 |
},
|
70 |
"_last_original_obs": {
|
71 |
":type:": "<class 'numpy.ndarray'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
-
"_episode_num":
|
75 |
"use_sde": false,
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAADVcfhCoJ/MMixCD1V03qak/UePDMUdfW40Xke3rkq6byBjwC7UILdh+FP9V9cHuXzyYNTgUjj/z3spNKqWY1TuNxim6Wug5I8B3yAe+9G6YBhkBHAE7K7Dz3T4sWs8fWEhMaYRCfrwjWu2AHcmZaDDl64yHz64liK8A/ZyjruRg2qb9VFhHs0g7fbNqrLA4PsiUUXnLzHKqkZt2+mz7lbAAFjQU17weoAonxn+4BQlLbHwG+9ZjSBv1oinQhtt1spfKWdfpiOHvqblbkXqWnsRGxtmGyLhv/wa+0XdS7nQWVfobwDGtej9L0wSaFI1gJY+irCCaq8xBIMEEg9Fd41sbFMqyNaa76UnseJZJAMEUL44+Fc4/wAIAD4uM+qzT2TbmEe8dzltmn4NgHH30zJoPll/PPqB3MjitU7Qce37mQM7eHr066BHDZBLFbCAxFSbj2OqclozjAYpse4skkJoUKEjcB9wHAulmFO6rt26AgxCFM0fTTe9/i+B1WVU2Y/mp0HmKMmuJ8kBZiR+8rbiL36pCRdbPaYQRqFL5MwykX7UKMqPmGi40Y1kYnMWrCw/qn/SjM8c12ZrtBNMxULryUfwo2qvR9GCeRFdGAnVwNKtpTziJeR4Nsbn96+/OcbXYSTVKYQ2I8VtOLTzrZH3j5e6Hfd1sOf1UyEdRD59HG2D3VsqlB0aROam7LQ0fNXbAL+f/n2xXtehEYOHh3BHiRbcUMOYWRgMLV9JOHthH5PXyggbmZMeHY8WOauI1vvtdI92EQ3fJ5p9uurtARP5f7w2q8ksqd0P2YtGs5rdv7ubRgqvjtPsqDZSXZ8+OPIjOL8quMrQCEKsHQ22eCVGm71E5+yz/28QmPfvEW2FS2OO7CMX73LD1OQoWugoIllF7zWh/QFaTVUK37jME3qriOHDAvpy/eEpod4ZpJaV4vZMvqkk271kMWFF6xxXR1LSgcaYyOd3xKgTmRu7Vw70YmpPCYuhnVEOYvtz7sEpNmx6pdu6le+rueJJ/DY2Cw9LxbeV8k0Dl/RqiDOHt58VkxnwkV887xSJdLOJxAKjry/+AO/WeM4Noyit2H43csFBFdbAZjqEqFOk6NGUqSdVJi7b0SUMcvC8URcEDQQRAdTIYgif+M52B5WnwSx1sYC2Uu56lO8NwWKv00NJpX/uRE4y5GyQv3kvcfoOnskD9d2nqDrG9D2K6znhPhd2FanpyS4BBca3M04/q+GluwjLyEdIYrT2o+kfRtbXyGyBzvyE7BRNIOiQZNtEBx3dDlDcZLUlQs2z8hg8bchfouXwREgYyNXcTuh1OYA+R/7+o23yvwue7xuSumHIGT0AKJ40JFM4mK1Xc3ezn21/Y6/wFYNxJedLgTSW2puzPK2IKAAujOWHPj+GvJcJELhzJaR+syTamXRQe5S6nERDjvswxS1sirEsFYUdjEOyF48rvOxE1JxHeIWKbWWUrRAdcmNTBiZIHhAYmanJL3QbqOjFJLhBmIPV1Oc0ufd9AcuODiuRPqNcP/Yq3SUXhY9LuvwitkSmkzKM3IB0wh+LLUYhEp13kH35XkolmxBj2vWmjA/+uY7rAbkIMY4MVM3Q/lk850tS2ncViwDndSzSaCjbU/0fVqEuqiOIXhOTdpULQY5ftrmW+7xYJMiy5T2adRzygHEriUa0wqNdjssP4K493N8PkqIZ89v4oAXZXU7VxHkIZbuBoXaUgS+YdyNhhAx6zn2Ffgt+9KYKV41TMg4JYVFTUk3gzA7fzUQ5rtYKOum072ZvXekpAceiq+huvChgyvWgsTJq/m0m6ci9DwagrGamat7MRHOYgk0+zP25+fCYY0HK/ZfIASAAUhP/UlIPE28yVhnlcyA0OQwnyZqkjo3vC9XkyMrQ1R73Yu0kJmsNBmb9TjMZy+y6n3ZGnOi6+Cpk9e0RqLtpYI1aaXAeSsh+k7Qevtl+bsqSQPC6Ygvk47yWLuEGSpZTcfVoeEfxQiNR4bVLQ71okfaWbeq0HP4mSiPuc8GbhpOkFJ2sY8jBHqkM3/ZeWV2SoTEQgC+Xc4xX9V7Y++SZm5ogOrLbEebXaU8SBlJQTyQZeWmXPRCOqVygOYGQJSkfvQSD2WiSx+MW13qMwM3Ewkc5TmjNawMo2BCjzTsVFHQh/+xnqZcoEp3U17w7jAVAzsL0i2hjofHjHy1Jzdy5HFSR7Wgc4/sKxBXs50Kit20vaguvva8b07G+q4NBeYvwQgBcDP3rWb53xyghkPM9xss8fkfevVvDP8gCkyi5hy3Hce1uT6SjTyqPYX2AZMxa0RbjwMPSzIkKxlnx7pETC2+c8ljgxobiBo3weKI1ahyuzyWQ5C3/g1BPm5oJvmZGjj6LYKxLkRYPy7oje5oBdqm5JcccvidqPOwV0M3avJ7YJ1HfKbPEQxDXMy3aJXvrkPR77nsI3sRYmvShTvW4GDJAyAWUtAddRZcK8mLC8X/8ITEIBIwqF0ticcIhudQU3qDRt2mfOI6j8ds/rK0cvRGT1aehyXBxgRLeLiiIL5vDvX7bjdFdeCUAts71yzcZx5rojOFz4nFWPphQ2fJS3Fc7a5Kk4c9u8rccUgDdpRQ9MVWtl5VWHwZ2nzJMky4rSdGjHtHYkbO8JxVtcVRUdZwhzHXN4MQ7VrRK58ce1ZLf1OI3k2pffqP7dKjT+7D8cn4ajOWdwb1K8qPmY5ux3h2xL6FD1I5i5nabr5di3W9qTtIkxy/hBssQokLQp2zZ3iLG67HSJ8bzeIxiSKZk5wUrguVL7+3ItT+iVcnuYCXgH3kDhWuLTAslWhKxDKDM5fWeDUK4u5M6Kv/BfGIuUMWRvfs+TpHv2OZex8YpC915a2dxTpypjMmhDhhGQj5w1NXE3LeXN3l+9VhP1qqjsU5L2Vgy2cYVvBcRYRUJhOnVu/XUYsTrnZuyxS4mPMN4fDQ9H8ElxCdXYQ72f4QwIRD+TlwWxe1LhPdW//0PrP1iqooLDE09tpNLaHIC3DUOe54k0Xntpt1IX5GcIyNZheVZ3D0YKjzIvivyxIF/D5WUvgYXbdtYhgiu4pBmi3lkmVWo5PRoqwS/aOIonqj18qknvIR5I7Tx87eY6DfKzlaat0TrMMcjTPNMXsrafUls4dvYE6kKUmKdG9p1lz3EpyUi5gos8kf3KmloW1UGVFzzQP3XFzP9CRDikZJELgcStm9mqacvJ+dg+TTVdb2/zahze6jmiv7C9WXc0g7QaNQ8X6aggK+DOiuymGcAT4AyzOZnAxw1XirGLp9A4HYtiMxzI9xiYc5GunozXwVybzXVXI3CK7CiDCPrD5YsM88rSadPl66UaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNQAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
39 |
"dtype": "float32",
|
40 |
"_shape": [
|
41 |
6
|
|
|
52 |
"_num_timesteps_at_start": 0,
|
53 |
"seed": null,
|
54 |
"action_noise": null,
|
55 |
+
"start_time": 1679528999392269254,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": null,
|
58 |
"lr_schedule": {
|
59 |
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
61 |
},
|
62 |
"_last_obs": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAANUvML8AAAAA7rrLNq/DFT4AAAAA0BHdPgAAAADS+Jy+DR8jPy/OHz3/wUK/RoAaPsKPQj8+WUu97oWjwFgSgj0Zg6Y/S5b4PVVUzD4eJz6+tbPoPt1xxT6VfL++AAAAAO66yzbhBUm9AAAAAOuUdT4AAAAA2gzUvl3On8BRb5E8gyCzPxiMtD2zvKI+87RbPpdrcD8QggQ9PemmP9jYBT47GoO/3vDevrWz6D7dccU+KtNCvwAAAADuuss2wNUPPgAAAACzEOM+AAAAALwtyr5BTSQ/xGCyPLISTb+7DiQ+nGFDPwTZUb2bO63AGMBIPdhfrj98vQQ+Ks6ZPkhFWb61s+g+3XHFPlkiPr8AAAAA7rrLNh3f7j0AAAAAIJ7ePgAAAAA1HsG+VhwjP/rCHz3aaEq/Wn0aPn7EQj8WzWS9+WSpwJQ6gD0nfaY/nUX+PUB2qj5sCTi+tbPoPt1xxT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"
|
65 |
},
|
66 |
"_last_episode_starts": {
|
67 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
},
|
70 |
"_last_original_obs": {
|
71 |
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAOsAmb4AAAAAAACAP2BA3DwAAAAAxpBiPAAAAAAOhRi/YgCAPzylDLcfvWO9jpRNPJwvgD86kBc7kuwavPOaMDx+CYA/qEYzu3yYUz+08tG8AACAPwAAgD+SJYS+AAAAAAAAgD8954u6AAAAAIAhLLwAAAAAidsfv4odMz33Dvu7JhaAPwqAtbtUz1I/YxKCPbIPgD8L4Xu56jyAPydil7nJa14+ZnijvQAAgD8AAIA//9WdvgAAAAAAAIA/jXbVPAAAAAB843o8AAAAANyKHr8LGoA/PKDLu1w4mr3uq3k82FmAP/nz/jrKOXa96C+5O8z+gz+JARa63MdIP/yCAL0AAIA/AACAP6ienL4AAAAAAACAP4aHuTwAAAAAhthoPAAAAADXVR2/JwCAP9IwTbclzY+9E4dNPDk6gD9v7WQ6DDMkvVFkKzyABoA/EJEDu5xYTD+9VMe8AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"
|
73 |
},
|
74 |
+
"_episode_num": 830,
|
75 |
"use_sde": false,
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG1cnB1s+FGMAWyUTasBjAF0lEdAiSWyGJvYOHV9lChoBkdAOfwAMlTm4mgHS2ZoCEdAiS2+g13t8nV9lChoBkdAhurm+sYEXGgHTegDaAhHQIlJ1IZqEe11fZQoaAZHQH7nuE/SpitoB03oA2gIR0CJcqe7L+xXdX2UKGgGR0B59jEFW4mUaAdN6AJoCEdAiYF0Cih37nV9lChoBkdAhkQ5flZHNGgHTegDaAhHQImprf1pTMt1fZQoaAZHQIKxJLytmthoB03oA2gIR0CJw/9c8kledX2UKGgGR0CAEMmCyyD7aAdNdgNoCEdAid8jHn2ZiXV9lChoBkdAdL0NbC79RGgHTb0BaAhHQInfnhIe5nV1fZQoaAZHQHI21nRLK3doB02YAWgIR0CJ9U2YOUdJdX2UKGgGR0CFlVaGpMpPaAdN6ANoCEdAifvY1He7+XV9lChoBkdAhfiwKa5PM2gHTegDaAhHQIpZerXDm8x1fZQoaAZHQIXGOxB3RohoB03oA2gIR0CKWf/YraufdX2UKGgGR0CE3S42jwhGaAdN6ANoCEdAinDNVBD5TXV9lChoBkdAhHBs+FDfFmgHTegDaAhHQIp3ALNOdoZ1fZQoaAZHQE4eocaOxSpoB0uEaAhHQIqHGXmeUY91fZQoaAZHQGlQ+sgdOqNoB019AWgIR0CKnwjMV1wHdX2UKGgGR0B6tnJDE3sHaAdNegJoCEdAiqfXiBGx2XV9lChoBkdAfBrrlNlAeWgHTYECaAhHQIqoPi704BF1fZQoaAZHQIdyNlNDc/NoB03oA2gIR0CLAY+r2g3+dX2UKGgGR0CH0b029+PSaAdN6ANoCEdAixltTtLL6nV9lChoBkdAht2p0OmR/2gHTegDaAhHQIsigHTqjah1fZQoaAZHQIdqwcFQl8hoB03oA2gIR0CLIuZ4wAU+dX2UKGgGR0CG+BajesPraAdN6ANoCEdAi3z4+B6KL3V9lChoBkdAhtiuAAhjfGgHTegDaAhHQIuV+5avA451fZQoaAZHQIYp5LIxQBRoB03oA2gIR0CLnrSP2f03dX2UKGgGR0CGvFfw7T2GaAdN6ANoCEdAi58XTmW+oXV9lChoBkdAYaSPnSv1UWgHS/5oCEdAi73gRChN/XV9lChoBkdAh1Ira24NJGgHTegDaAhHQIv4QJXyRSx1fZQoaAZHQIcb0zZYgaFoB03oA2gIR0CMEG+fRNRFdX2UKGgGR0CGzaK64Ds/aAdN6ANoCEdAjBkrFGXoknV9lChoBkdAhhuHrpqynmgHTegDaAhHQIw3/gWJrL11fZQoaAZHQIaUB00WM0hoB03oA2gIR0CMcvu76Hj7dX2UKGgGR0CG7Ycz67/XaAdN6ANoCEdAjIrg4ffXPXV9lChoBkdAhtrGdI5HVmgHTegDaAhHQIyTngzguRN1fZQoaAZHQIOlJc3VColoB03oA2gIR0CMst2FFlTWdX2UKGgGR0CDodCb+cYqaAdN6ANoCEdAjOzsRxtHhHV9lChoBkdAhgsFQuVX3mgHTegDaAhHQI0E3Tuv2Xd1fZQoaAZHQIV+IHE/B31oB03oA2gIR0CNDZR4QjD9dX2UKGgGR0CFoQqrilzmaAdN6ANoCEdAjS2EsJ6Y3XV9lChoBkdAhKrl8PWhAWgHTegDaAhHQI1mI20iQkp1fZQoaAZHQIXf52St/4JoB03oA2gIR0CNfquA7PpqdX2UKGgGR0CD5pIDHOryaAdN6ANoCEdAjYfMPBi1A3V9lChoBkdAhjGcqWkadmgHTegDaAhHQI2m1SS/0ul1fZQoaAZHQExnEv0yxiZoB0uLaAhHQI236djG1hN1fZQoaAZHQIKyDftQbddoB00kA2gIR0CNyLpwCKaYdX2UKGgGR0CGh/jghr31aAdN6ANoCEdAjfn6KUFB6nV9lChoBkdAhtbphOP/72gHTegDaAhHQI4CvPu5SWJ1fZQoaAZHQIWWDs6aLGdoB03oA2gIR0COMldpItlJdX2UKGgGR0CGzPPjXFtLaAdN6ANoCEdAjkPQNsnAqXV9lChoBkdAh1lKesgdO2gHTegDaAhHQI50l6cAiml1fZQoaAZHQIasqSV4X41oB03oA2gIR0COfWfBeokzdX2UKGgGR0CExLhtLteEaAdN6ANoCEdAjq8ooNNJv3V9lChoBkdAgxG40VJti2gHTegDaAhHQI7AJcs189h1fZQoaAZHQIZvrUiILw5oB03oA2gIR0CO8GgNgBtDdX2UKGgGR0CCjcXPZ7HAaAdN6ANoCEdAjvk9GAkLQXV9lChoBkdAg4W/eLvTgGgHTegDaAhHQI8rP3BYV7B1fZQoaAZHQISOf6ZYxL1oB03oA2gIR0CPO/J/XoTxdX2UKGgGR0CFEwJemelLaAdN6ANoCEdAj2wmygPEsXV9lChoBkdAhNl+3QUpNWgHTegDaAhHQI91oA80UGp1fZQoaAZHQIYntIbwSapoB03oA2gIR0CPpgOgg5imdX2UKGgGR0CFF7Rv3rUtaAdN6ANoCEdAj7be8Gs3hnV9lChoBkdAhBWIE0SAY2gHTegDaAhHQI/oIEhaC+V1fZQoaAZHQIRdIp2ECeVoB03oA2gIR0CP8NA6+36RdX2UKGgGR0CFOEP1ct5EaAdN6ANoCEdAkBDc+NcW03V9lChoBkdAg2/tTcZccGgHTegDaAhHQJAZrD2rXDp1fZQoaAZHQGmeSN4qwyJoB00iAWgIR0CQK/Cih37ldX2UKGgGR0BKL4DcM3IdaAdLNmgIR0CQLzLZBcAzdX2UKGgGR0CDDoM2m52AaAdN6ANoCEdAkDJJwbVBlnV9lChoBkdAgwQwQtjCpGgHTegDaAhHQJA22qPwNLF1fZQoaAZHQFLNvnr6ciJoB0tfaAhHQJA4PVG0/np1fZQoaAZHQECz8l5WzWxoB0sqaAhHQJA6yQp4KQd1fZQoaAZHQFJwKD0163RoB0tLaAhHQJA7Ycp9ZzR1fZQoaAZHQEPbvYODrZ9oB0ssaAhHQJA9c+B6KLt1fZQoaAZHQIO1wdjoZAJoB03oA2gIR0CQT726ClJpdX2UKGgGR0Bwp8+C9RJmaAdNIgFoCEdAkE/tbkfcOHV9lChoBkdAgm9gc1fmcWgHTegDaAhHQJBtpqO938p1fZQoaAZHQEYeziS7oStoB0uDaAhHQJB1uqlxffJ1fZQoaAZHQIJXD7Q9ic5oB03oA2gIR0CQeeRnOB1+dX2UKGgGR0CHo/j/+85CaAdN6ANoCEdAkI4XMyJsPHV9lChoBkdAgtBplar3kGgHTegDaAhHQJCORq33HrB1fZQoaAZHQGtVIxgy/K1oB00iAWgIR0CQn5Yzi0fHdX2UKGgGR0B9JAQI2OyWaAdN6ANoCEdAkLPNvXK8tnV9lChoBkdAgfEXIU8FIWgHTegDaAhHQJC3xX+2mYV1fZQoaAZHQIFdO9pRGc5oB02+AmgIR0CQysrdWQwLdX2UKGgGR0CHovZFG5MDaAdN6ANoCEdAkMt5PEbYLHV9lChoBkdAewM8jAzpHWgHTT0CaAhHQJDuPMEA5rB1fZQoaAZHQINvky+HrQhoB03oA2gIR0CQ8TCbMHKPdX2UKGgGR0CIeQAlOXVtaAdN6ANoCEdAkPUpOBUaQ3V9lChoBkdAYojcAzYVZmgHS6poCEdAkPiOkgwGnnV9lChoBkdAguQolD4QBmgHTegDaAhHQJEJBZs9B8h1fZQoaAZHQIh/4xWT5ftoB03oA2gIR0CRLo6wt8NQdX2UKGgGR0CHPywQlKK6aAdN6ANoCEdAkTKEc81XNnV9lChoBkdAhyDso+fRNWgHTegDaAhHQJE2AvL5h0B1fZQoaAZHwDJ/aYeDFqBoB0tIaAhHQJE3Brbg0j11fZQoaAZHQIh57961LJ1oB03oA2gIR0CRRtAz544ZdX2UKGgGR0CIRb0EovzwaAdN6ANoCEdAkWvBywOe8XV9lChoBkdAiDMXEhq0t2gHTegDaAhHQJFzQI/qxC91fZQoaAZHQIf8NfReC05oB03oA2gIR0CRdF/axoqTdX2UKGgGR0CHhu/Y8Md+aAdN6ANoCEdAkYROhbnoxHVlLg=="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
sac-Walker2DBulletEnv-v0/ent_coef_optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1507
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c693058e08975ca57fc559e5c10aed93a7983a6389e3a37a4b201f5abacddc51
|
3 |
size 1507
|
sac-Walker2DBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1485573
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:731517d26fd4abdd063869fd9d7cc3d08215f5c3ba5acc4a9355de04aae8855e
|
3 |
size 1485573
|
sac-Walker2DBulletEnv-v0/pytorch_variables.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 747
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8de207f30de9fb722eec9eb21c784b2d9414cf016a95668ae4495492bac2df46
|
3 |
size 747
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1936
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0d182e6e36ac3f722a3a38273feb30c7cc4ff70f2bfc56b61e1bfbe10b751da
|
3 |
size 1936
|