Shougakusei
commited on
Commit
•
20685e2
1
Parent(s):
75b4425
FIRST COMMIT
Browse files- PPO_LunarLander.zip +3 -0
- PPO_LunarLander/_stable_baselines3_version +1 -0
- PPO_LunarLander/data +94 -0
- PPO_LunarLander/policy.optimizer.pth +3 -0
- PPO_LunarLander/policy.pth +3 -0
- PPO_LunarLander/pytorch_variables.pth +3 -0
- PPO_LunarLander/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO_LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4232f5586afea2adb0d5db34d07f030c900ffc4021c18bcb7d17c277276e4971
|
3 |
+
size 147173
|
PPO_LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
PPO_LunarLander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbfdc94dca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbfdc94dd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbfdc94ddc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbfdc94de50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbfdc94dee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbfdc94df70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbfdc951040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbfdc9510d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbfdc951160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbfdc9511f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbfdc951280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fbfdc949450>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671516171365633805,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGa8s7y/fC4+Uu6FPfY+Hb4OiBU9busPPQAAAAAAAAAAs8XOva4PgLpWPhazrE9csOvmCztQWbEzAACAPwAAgD/NXg6+j2R3O3yevrefAA01T8UgvVhl9DYAAIA/AACAPxpScb5JHj49W0bmPZWYY76eF4k87cPYPAAAAAAAAAAAk6whvh1sJT7aCzg993yGvg8dRjxI5Jw8AAAAAAAAAADGgS4+D8QjvPCWaDpsbDO4rkSEvc1wjLkAAIA/AACAPzDsgz6YVqM+0uEuvu/sj74/ccc8LjUQvQAAAAAAAAAA5kF9veGggLqWNdkyQwlJKbOzjjpCiy+zAACAPwAAgD/guDS+XFgvvM2bXDsJBZ88au6PPV2sgr0AAIA/AACAP80LiLyPbj66VejMOFuZZTX/MEA5tmvztwAAgD8AAIA/AJuXvXJZnj47Qec8noZ4vmW2+zsW8T+9AAAAAAAAAAAao8E917MSOjf5jby0bgQ8q+UNO2LDCT0AAAAAAAAAABoCQL4oV4O8LuJOuwN8nrlfzuI9Shh/OgAAgD8AAIA/AGISPsekTD4uxhC+AfKRvmCBpjt1y6O7AAAAAAAAAABzPyY+XJNjvM9BrTrg+5e4hcTAvbOQ+bkAAIA/AACAP4CmQr64DKo8XslmuvOA0zgCIDS+MgihOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZmg8EUTwbECUhpRSlIwBbJRNoQGMAXSUR0Ccbsqd6LOzdX2UKGgGaAloD0MIzbBR1m+8bECUhpRSlGgVTQUBaBZHQJxvN4X40uV1fZQoaAZoCWgPQwg2WDhJ86xiQJSGlFKUaBVN6ANoFkdAnG85CrtE5XV9lChoBmgJaA9DCDtvY7Mjl2BAlIaUUpRoFU3oA2gWR0Ccb7BtUGVzdX2UKGgGaAloD0MISG+4j1yTakCUhpRSlGgVTRcBaBZHQJxv98eCCjF1fZQoaAZoCWgPQwhaY9AJoRNwQJSGlFKUaBVNDQFoFkdAnHDBn3+MqHV9lChoBmgJaA9DCAWJ7e4B+iJAlIaUUpRoFUvoaBZHQJxw9TOxB3R1fZQoaAZoCWgPQwg8TPvmfuRsQJSGlFKUaBVNOwFoFkdAnHE7SE12q3V9lChoBmgJaA9DCJY+dEF9LXFAlIaUUpRoFU0TAWgWR0Cccc8baRISdX2UKGgGaAloD0MIM1GE1O3aY0CUhpRSlGgVTegDaBZHQJxyCILw4Kh1fZQoaAZoCWgPQwga3qzBOwZwQJSGlFKUaBVNGAFoFkdAnHKkoKD02HV9lChoBmgJaA9DCBR7aB+rbHBAlIaUUpRoFU0EAWgWR0Cc0k557gKndX2UKGgGaAloD0MIsAER4sq9MkCUhpRSlGgVS9doFkdAnNL6h+OOsHV9lChoBmgJaA9DCN6rViZ8JnBAlIaUUpRoFUvvaBZHQJzTZi3G4qh1fZQoaAZoCWgPQwiLUdfaO1RzQJSGlFKUaBVL/WgWR0Cc0+We6I3zdX2UKGgGaAloD0MI8YEd/wUJcECUhpRSlGgVTRUBaBZHQJzWh5qubI91fZQoaAZoCWgPQwhMpZ9wtk5wQJSGlFKUaBVL8GgWR0Cc1tvWYnfEdX2UKGgGaAloD0MInZ/iOPB8akCUhpRSlGgVTSUBaBZHQJzXwVnEl3R1fZQoaAZoCWgPQwhIisiwCkNuQJSGlFKUaBVNHwFoFkdAnNhqT8pCr3V9lChoBmgJaA9DCJCEfTsJhHBAlIaUUpRoFU05AWgWR0Cc2vIaLn9vdX2UKGgGaAloD0MIvJUlOkvWckCUhpRSlGgVTQABaBZHQJzch9MK1G91fZQoaAZoCWgPQwhzuiwmtmFvQJSGlFKUaBVNAQFoFkdAnN39gnc+JXV9lChoBmgJaA9DCL048dUOTXBAlIaUUpRoFUv5aBZHQJzePV5KODJ1fZQoaAZoCWgPQwgUsvM2NtBwQJSGlFKUaBVNHwFoFkdAnN6+eJ53T3V9lChoBmgJaA9DCMAGRIirJG5AlIaUUpRoFU3UAWgWR0Cc3tvugHu7dX2UKGgGaAloD0MIEEHV6FVmYECUhpRSlGgVTegDaBZHQJzg/Motthx1fZQoaAZoCWgPQwi2LjVCv0VvQJSGlFKUaBVL7mgWR0Cc4YpItlI3dX2UKGgGaAloD0MIXRd+cL4ycUCUhpRSlGgVS/9oFkdAnOLFd5Y5k3V9lChoBmgJaA9DCIJwBRRq63BAlIaUUpRoFU10AWgWR0Cc5ZgV45cUdX2UKGgGaAloD0MIavXVVQELbkCUhpRSlGgVTRUBaBZHQJzmCm/Firl1fZQoaAZoCWgPQwiYaftXVrpxQJSGlFKUaBVNfAFoFkdAnOY5+tr9EXV9lChoBmgJaA9DCH+IDRZOkm9AlIaUUpRoFU0LAWgWR0Cc5xFVT72tdX2UKGgGaAloD0MI5KJaRJSdcECUhpRSlGgVS+hoFkdAnOehdY4hlnV9lChoBmgJaA9DCKewUkHFanFAlIaUUpRoFU0FAWgWR0Cc6ANFjNILdX2UKGgGaAloD0MIbY5zmzAPcUCUhpRSlGgVTSwBaBZHQJzqHspobn51fZQoaAZoCWgPQwgLJZNTO4huQJSGlFKUaBVL8mgWR0Cc6p2SMcZMdX2UKGgGaAloD0MI9goL7gccbUCUhpRSlGgVTREBaBZHQJzrKmXPZ7J1fZQoaAZoCWgPQwgWFtwPeItxQJSGlFKUaBVNWgFoFkdAnOs73XZoPHV9lChoBmgJaA9DCK71RULb4mJAlIaUUpRoFU3oA2gWR0Cc7KYYBNmEdX2UKGgGaAloD0MIbSBdbFqsYECUhpRSlGgVTegDaBZHQJzuFJNCZ4R1fZQoaAZoCWgPQwgK98q8VR9vQJSGlFKUaBVL8GgWR0Cc7qMMZxaQdX2UKGgGaAloD0MIpP0PsNaRb0CUhpRSlGgVTUYBaBZHQJzuxyZKFqV1fZQoaAZoCWgPQwiWsaGb/f5dQJSGlFKUaBVN6ANoFkdAnO7ejASFoXV9lChoBmgJaA9DCNGvrZ/+oG9AlIaUUpRoFUvuaBZHQJzvY4iosI51fZQoaAZoCWgPQwg6lQwAlbhwQJSGlFKUaBVNFAFoFkdAnO9izsyBTXV9lChoBmgJaA9DCGnk84qnE1tAlIaUUpRoFU3oA2gWR0Cc7/Pp6hQFdX2UKGgGaAloD0MIAyZw6y5LcUCUhpRSlGgVTQEBaBZHQJzwVAE+xGF1fZQoaAZoCWgPQwg6IAn7dpBvQJSGlFKUaBVNBwFoFkdAnPDClBQem3V9lChoBmgJaA9DCGPTSiEQT2JAlIaUUpRoFU3oA2gWR0Cc8MO/tY0VdX2UKGgGaAloD0MIv5gtWZXDb0CUhpRSlGgVS/doFkdAnPHRib2DhHV9lChoBmgJaA9DCL8oQX+hm3BAlIaUUpRoFU0KAWgWR0Cc8ywDvE0jdX2UKGgGaAloD0MIzcr2Ia+TcECUhpRSlGgVTZ0BaBZHQJzzYliSaE11fZQoaAZoCWgPQwjY74l1qjZwQJSGlFKUaBVNGgFoFkdAnPOSK77KrHV9lChoBmgJaA9DCHGS5o/p+W1AlIaUUpRoFU1nAWgWR0Cc9VyQxN7CdX2UKGgGaAloD0MIAvBPqRKXb0CUhpRSlGgVTQ4BaBZHQJz1qB3A2yd1fZQoaAZoCWgPQwjOVIhHop5wQJSGlFKUaBVL/WgWR0Cc9bqHGjsVdX2UKGgGaAloD0MIbk26LREfcUCUhpRSlGgVTQwBaBZHQJz2D/Mnqml1fZQoaAZoCWgPQwiUpdb7Dd9uQJSGlFKUaBVNCQFoFkdAnPa3FglWwXV9lChoBmgJaA9DCFZkdEASBjxAlIaUUpRoFUvYaBZHQJz20dhiLEV1fZQoaAZoCWgPQwjiICHKFwtqQJSGlFKUaBVL/2gWR0Cc9wmD15B1dX2UKGgGaAloD0MI/MitSTe6cECUhpRSlGgVS+doFkdAnPc7C79Q43V9lChoBmgJaA9DCEqbqnvkW25AlIaUUpRoFUv7aBZHQJz3TTd+G491fZQoaAZoCWgPQwhD5zV2yZNwQJSGlFKUaBVNKAFoFkdAnPeLRrrPdHV9lChoBmgJaA9DCPESnPpAPW9AlIaUUpRoFU1FAWgWR0Cc98HpKSPmdX2UKGgGaAloD0MI1xael4owcECUhpRSlGgVTRABaBZHQJz5FB6a9bp1fZQoaAZoCWgPQwg1YJD06U5xQJSGlFKUaBVL/mgWR0Cc+eZaFEiMdX2UKGgGaAloD0MILEZda+/lcECUhpRSlGgVTRcBaBZHQJz6/o0Q9Rt1fZQoaAZoCWgPQwipaoKou3NxQJSGlFKUaBVNIAFoFkdAnPsOMyad+XV9lChoBmgJaA9DCGRz1TwHiHBAlIaUUpRoFUv3aBZHQJz8JLrX18N1fZQoaAZoCWgPQwgju9IyUlszQJSGlFKUaBVL22gWR0Cc/FslsxfwdX2UKGgGaAloD0MICmR2Fv0LcECUhpRSlGgVS/loFkdAnPycAeaKDXV9lChoBmgJaA9DCO8fC9GhOnFAlIaUUpRoFU0OAWgWR0Cc/Op5/smfdX2UKGgGaAloD0MIrP4IwwDQb0CUhpRSlGgVTRoBaBZHQJz88tXgccV1fZQoaAZoCWgPQwhO8iN+xaNvQJSGlFKUaBVL8GgWR0Cc/YEE1VHXdX2UKGgGaAloD0MIvvc3aC/scUCUhpRSlGgVS/VoFkdAnP21xsEaEXV9lChoBmgJaA9DCMOayqLws3JAlIaUUpRoFU0VAWgWR0CdAQZYgaFVdX2UKGgGaAloD0MIqU2c3G/UcUCUhpRSlGgVTZABaBZHQJ0B2yZ8a4t1fZQoaAZoCWgPQwgptKz7x+NuQJSGlFKUaBVNHwFoFkdAnQKcGgSOBHV9lChoBmgJaA9DCKw6qwV2fXBAlIaUUpRoFUv8aBZHQJ0C1JcxCY11fZQoaAZoCWgPQwj/W8mODQ1qQJSGlFKUaBVNkQFoFkdAnQMBHG0eEXV9lChoBmgJaA9DCFa45SMpmSJAlIaUUpRoFUvEaBZHQJ0DEjFAE+x1fZQoaAZoCWgPQwh1OpD1VEtwQJSGlFKUaBVNGAFoFkdAnQO3IdU83nV9lChoBmgJaA9DCKg5eZGJUHBAlIaUUpRoFUv0aBZHQJ0Dx+w1R+B1fZQoaAZoCWgPQwimuRXC6oRyQJSGlFKUaBVNDAFoFkdAnQS2nXNC7nV9lChoBmgJaA9DCBVxOsnWm29AlIaUUpRoFU0IAWgWR0CdBNrfLs8gdX2UKGgGaAloD0MImNpSB/lzbUCUhpRSlGgVTQ4BaBZHQJ0FUliSaE11fZQoaAZoCWgPQwj3eCEdnv1tQJSGlFKUaBVNBQFoFkdAnQWnHq/ucHV9lChoBmgJaA9DCD4EVaPXRG9AlIaUUpRoFU0BAmgWR0CdBp0NBnjAdX2UKGgGaAloD0MI1hnfF5fEY0CUhpRSlGgVTegDaBZHQJ0JykrPMSt1fZQoaAZoCWgPQwip2QOtAFFwQJSGlFKUaBVL/2gWR0CdCpmNipeedX2UKGgGaAloD0MIXcXiNwVycECUhpRSlGgVTQIBaBZHQJ0LK7YkE9t1fZQoaAZoCWgPQwi9qN2vQmRwQJSGlFKUaBVNCQFoFkdAnQs0n1Fpf3V9lChoBmgJaA9DCDKSPULNpW1AlIaUUpRoFU0GAWgWR0CdCz/ATIvKdX2UKGgGaAloD0MI02hyMUb+ckCUhpRSlGgVS/toFkdAnQu5aiblR3V9lChoBmgJaA9DCLA9syTAAm9AlIaUUpRoFUvvaBZHQJ0Mesny/bl1fZQoaAZoCWgPQwgfLGNDN0MsQJSGlFKUaBVLy2gWR0CdDVgqVhTgdX2UKGgGaAloD0MImODUB5ILc0CUhpRSlGgVS/5oFkdAnQ1z81n/UHV9lChoBmgJaA9DCG/Vdahm/3BAlIaUUpRoFUv1aBZHQJ0NjbSJCSl1fZQoaAZoCWgPQwgIA8+9h1dwQJSGlFKUaBVNKgFoFkdAnQ4nnyNGVnV9lChoBmgJaA9DCAmlL4ScznJAlIaUUpRoFU1iAWgWR0CdDtnE2pAEdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO_LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69a5a6763ec03e2c8c8943bd95191fc5a62b87081d9f10daf95abb1bba947843
|
3 |
+
size 87929
|
PPO_LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a494b6cc2f940c5d0f3d6d3952501429c9f7521395e87d23ea6486eae01f28b
|
3 |
+
size 43201
|
PPO_LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO_LunarLander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 226.43 +/- 50.73
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbfdc94dca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbfdc94dd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbfdc94ddc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbfdc94de50>", "_build": "<function ActorCriticPolicy._build at 0x7fbfdc94dee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbfdc94df70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbfdc951040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbfdc9510d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbfdc951160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbfdc9511f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbfdc951280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbfdc949450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671516171365633805, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGa8s7y/fC4+Uu6FPfY+Hb4OiBU9busPPQAAAAAAAAAAs8XOva4PgLpWPhazrE9csOvmCztQWbEzAACAPwAAgD/NXg6+j2R3O3yevrefAA01T8UgvVhl9DYAAIA/AACAPxpScb5JHj49W0bmPZWYY76eF4k87cPYPAAAAAAAAAAAk6whvh1sJT7aCzg993yGvg8dRjxI5Jw8AAAAAAAAAADGgS4+D8QjvPCWaDpsbDO4rkSEvc1wjLkAAIA/AACAPzDsgz6YVqM+0uEuvu/sj74/ccc8LjUQvQAAAAAAAAAA5kF9veGggLqWNdkyQwlJKbOzjjpCiy+zAACAPwAAgD/guDS+XFgvvM2bXDsJBZ88au6PPV2sgr0AAIA/AACAP80LiLyPbj66VejMOFuZZTX/MEA5tmvztwAAgD8AAIA/AJuXvXJZnj47Qec8noZ4vmW2+zsW8T+9AAAAAAAAAAAao8E917MSOjf5jby0bgQ8q+UNO2LDCT0AAAAAAAAAABoCQL4oV4O8LuJOuwN8nrlfzuI9Shh/OgAAgD8AAIA/AGISPsekTD4uxhC+AfKRvmCBpjt1y6O7AAAAAAAAAABzPyY+XJNjvM9BrTrg+5e4hcTAvbOQ+bkAAIA/AACAP4CmQr64DKo8XslmuvOA0zgCIDS+MgihOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZmg8EUTwbECUhpRSlIwBbJRNoQGMAXSUR0Ccbsqd6LOzdX2UKGgGaAloD0MIzbBR1m+8bECUhpRSlGgVTQUBaBZHQJxvN4X40uV1fZQoaAZoCWgPQwg2WDhJ86xiQJSGlFKUaBVN6ANoFkdAnG85CrtE5XV9lChoBmgJaA9DCDtvY7Mjl2BAlIaUUpRoFU3oA2gWR0Ccb7BtUGVzdX2UKGgGaAloD0MISG+4j1yTakCUhpRSlGgVTRcBaBZHQJxv98eCCjF1fZQoaAZoCWgPQwhaY9AJoRNwQJSGlFKUaBVNDQFoFkdAnHDBn3+MqHV9lChoBmgJaA9DCAWJ7e4B+iJAlIaUUpRoFUvoaBZHQJxw9TOxB3R1fZQoaAZoCWgPQwg8TPvmfuRsQJSGlFKUaBVNOwFoFkdAnHE7SE12q3V9lChoBmgJaA9DCJY+dEF9LXFAlIaUUpRoFU0TAWgWR0Cccc8baRISdX2UKGgGaAloD0MIM1GE1O3aY0CUhpRSlGgVTegDaBZHQJxyCILw4Kh1fZQoaAZoCWgPQwga3qzBOwZwQJSGlFKUaBVNGAFoFkdAnHKkoKD02HV9lChoBmgJaA9DCBR7aB+rbHBAlIaUUpRoFU0EAWgWR0Cc0k557gKndX2UKGgGaAloD0MIsAER4sq9MkCUhpRSlGgVS9doFkdAnNL6h+OOsHV9lChoBmgJaA9DCN6rViZ8JnBAlIaUUpRoFUvvaBZHQJzTZi3G4qh1fZQoaAZoCWgPQwiLUdfaO1RzQJSGlFKUaBVL/WgWR0Cc0+We6I3zdX2UKGgGaAloD0MI8YEd/wUJcECUhpRSlGgVTRUBaBZHQJzWh5qubI91fZQoaAZoCWgPQwhMpZ9wtk5wQJSGlFKUaBVL8GgWR0Cc1tvWYnfEdX2UKGgGaAloD0MInZ/iOPB8akCUhpRSlGgVTSUBaBZHQJzXwVnEl3R1fZQoaAZoCWgPQwhIisiwCkNuQJSGlFKUaBVNHwFoFkdAnNhqT8pCr3V9lChoBmgJaA9DCJCEfTsJhHBAlIaUUpRoFU05AWgWR0Cc2vIaLn9vdX2UKGgGaAloD0MIvJUlOkvWckCUhpRSlGgVTQABaBZHQJzch9MK1G91fZQoaAZoCWgPQwhzuiwmtmFvQJSGlFKUaBVNAQFoFkdAnN39gnc+JXV9lChoBmgJaA9DCL048dUOTXBAlIaUUpRoFUv5aBZHQJzePV5KODJ1fZQoaAZoCWgPQwgUsvM2NtBwQJSGlFKUaBVNHwFoFkdAnN6+eJ53T3V9lChoBmgJaA9DCMAGRIirJG5AlIaUUpRoFU3UAWgWR0Cc3tvugHu7dX2UKGgGaAloD0MIEEHV6FVmYECUhpRSlGgVTegDaBZHQJzg/Motthx1fZQoaAZoCWgPQwi2LjVCv0VvQJSGlFKUaBVL7mgWR0Cc4YpItlI3dX2UKGgGaAloD0MIXRd+cL4ycUCUhpRSlGgVS/9oFkdAnOLFd5Y5k3V9lChoBmgJaA9DCIJwBRRq63BAlIaUUpRoFU10AWgWR0Cc5ZgV45cUdX2UKGgGaAloD0MIavXVVQELbkCUhpRSlGgVTRUBaBZHQJzmCm/Firl1fZQoaAZoCWgPQwiYaftXVrpxQJSGlFKUaBVNfAFoFkdAnOY5+tr9EXV9lChoBmgJaA9DCH+IDRZOkm9AlIaUUpRoFU0LAWgWR0Cc5xFVT72tdX2UKGgGaAloD0MI5KJaRJSdcECUhpRSlGgVS+hoFkdAnOehdY4hlnV9lChoBmgJaA9DCKewUkHFanFAlIaUUpRoFU0FAWgWR0Cc6ANFjNILdX2UKGgGaAloD0MIbY5zmzAPcUCUhpRSlGgVTSwBaBZHQJzqHspobn51fZQoaAZoCWgPQwgLJZNTO4huQJSGlFKUaBVL8mgWR0Cc6p2SMcZMdX2UKGgGaAloD0MI9goL7gccbUCUhpRSlGgVTREBaBZHQJzrKmXPZ7J1fZQoaAZoCWgPQwgWFtwPeItxQJSGlFKUaBVNWgFoFkdAnOs73XZoPHV9lChoBmgJaA9DCK71RULb4mJAlIaUUpRoFU3oA2gWR0Cc7KYYBNmEdX2UKGgGaAloD0MIbSBdbFqsYECUhpRSlGgVTegDaBZHQJzuFJNCZ4R1fZQoaAZoCWgPQwgK98q8VR9vQJSGlFKUaBVL8GgWR0Cc7qMMZxaQdX2UKGgGaAloD0MIpP0PsNaRb0CUhpRSlGgVTUYBaBZHQJzuxyZKFqV1fZQoaAZoCWgPQwiWsaGb/f5dQJSGlFKUaBVN6ANoFkdAnO7ejASFoXV9lChoBmgJaA9DCNGvrZ/+oG9AlIaUUpRoFUvuaBZHQJzvY4iosI51fZQoaAZoCWgPQwg6lQwAlbhwQJSGlFKUaBVNFAFoFkdAnO9izsyBTXV9lChoBmgJaA9DCGnk84qnE1tAlIaUUpRoFU3oA2gWR0Cc7/Pp6hQFdX2UKGgGaAloD0MIAyZw6y5LcUCUhpRSlGgVTQEBaBZHQJzwVAE+xGF1fZQoaAZoCWgPQwg6IAn7dpBvQJSGlFKUaBVNBwFoFkdAnPDClBQem3V9lChoBmgJaA9DCGPTSiEQT2JAlIaUUpRoFU3oA2gWR0Cc8MO/tY0VdX2UKGgGaAloD0MIv5gtWZXDb0CUhpRSlGgVS/doFkdAnPHRib2DhHV9lChoBmgJaA9DCL8oQX+hm3BAlIaUUpRoFU0KAWgWR0Cc8ywDvE0jdX2UKGgGaAloD0MIzcr2Ia+TcECUhpRSlGgVTZ0BaBZHQJzzYliSaE11fZQoaAZoCWgPQwjY74l1qjZwQJSGlFKUaBVNGgFoFkdAnPOSK77KrHV9lChoBmgJaA9DCHGS5o/p+W1AlIaUUpRoFU1nAWgWR0Cc9VyQxN7CdX2UKGgGaAloD0MIAvBPqRKXb0CUhpRSlGgVTQ4BaBZHQJz1qB3A2yd1fZQoaAZoCWgPQwjOVIhHop5wQJSGlFKUaBVL/WgWR0Cc9bqHGjsVdX2UKGgGaAloD0MIbk26LREfcUCUhpRSlGgVTQwBaBZHQJz2D/Mnqml1fZQoaAZoCWgPQwiUpdb7Dd9uQJSGlFKUaBVNCQFoFkdAnPa3FglWwXV9lChoBmgJaA9DCFZkdEASBjxAlIaUUpRoFUvYaBZHQJz20dhiLEV1fZQoaAZoCWgPQwjiICHKFwtqQJSGlFKUaBVL/2gWR0Cc9wmD15B1dX2UKGgGaAloD0MI/MitSTe6cECUhpRSlGgVS+doFkdAnPc7C79Q43V9lChoBmgJaA9DCEqbqnvkW25AlIaUUpRoFUv7aBZHQJz3TTd+G491fZQoaAZoCWgPQwhD5zV2yZNwQJSGlFKUaBVNKAFoFkdAnPeLRrrPdHV9lChoBmgJaA9DCPESnPpAPW9AlIaUUpRoFU1FAWgWR0Cc98HpKSPmdX2UKGgGaAloD0MI1xael4owcECUhpRSlGgVTRABaBZHQJz5FB6a9bp1fZQoaAZoCWgPQwg1YJD06U5xQJSGlFKUaBVL/mgWR0Cc+eZaFEiMdX2UKGgGaAloD0MILEZda+/lcECUhpRSlGgVTRcBaBZHQJz6/o0Q9Rt1fZQoaAZoCWgPQwipaoKou3NxQJSGlFKUaBVNIAFoFkdAnPsOMyad+XV9lChoBmgJaA9DCGRz1TwHiHBAlIaUUpRoFUv3aBZHQJz8JLrX18N1fZQoaAZoCWgPQwgju9IyUlszQJSGlFKUaBVL22gWR0Cc/FslsxfwdX2UKGgGaAloD0MICmR2Fv0LcECUhpRSlGgVS/loFkdAnPycAeaKDXV9lChoBmgJaA9DCO8fC9GhOnFAlIaUUpRoFU0OAWgWR0Cc/Op5/smfdX2UKGgGaAloD0MIrP4IwwDQb0CUhpRSlGgVTRoBaBZHQJz88tXgccV1fZQoaAZoCWgPQwhO8iN+xaNvQJSGlFKUaBVL8GgWR0Cc/YEE1VHXdX2UKGgGaAloD0MIvvc3aC/scUCUhpRSlGgVS/VoFkdAnP21xsEaEXV9lChoBmgJaA9DCMOayqLws3JAlIaUUpRoFU0VAWgWR0CdAQZYgaFVdX2UKGgGaAloD0MIqU2c3G/UcUCUhpRSlGgVTZABaBZHQJ0B2yZ8a4t1fZQoaAZoCWgPQwgptKz7x+NuQJSGlFKUaBVNHwFoFkdAnQKcGgSOBHV9lChoBmgJaA9DCKw6qwV2fXBAlIaUUpRoFUv8aBZHQJ0C1JcxCY11fZQoaAZoCWgPQwj/W8mODQ1qQJSGlFKUaBVNkQFoFkdAnQMBHG0eEXV9lChoBmgJaA9DCFa45SMpmSJAlIaUUpRoFUvEaBZHQJ0DEjFAE+x1fZQoaAZoCWgPQwh1OpD1VEtwQJSGlFKUaBVNGAFoFkdAnQO3IdU83nV9lChoBmgJaA9DCKg5eZGJUHBAlIaUUpRoFUv0aBZHQJ0Dx+w1R+B1fZQoaAZoCWgPQwimuRXC6oRyQJSGlFKUaBVNDAFoFkdAnQS2nXNC7nV9lChoBmgJaA9DCBVxOsnWm29AlIaUUpRoFU0IAWgWR0CdBNrfLs8gdX2UKGgGaAloD0MImNpSB/lzbUCUhpRSlGgVTQ4BaBZHQJ0FUliSaE11fZQoaAZoCWgPQwj3eCEdnv1tQJSGlFKUaBVNBQFoFkdAnQWnHq/ucHV9lChoBmgJaA9DCD4EVaPXRG9AlIaUUpRoFU0BAmgWR0CdBp0NBnjAdX2UKGgGaAloD0MI1hnfF5fEY0CUhpRSlGgVTegDaBZHQJ0JykrPMSt1fZQoaAZoCWgPQwip2QOtAFFwQJSGlFKUaBVL/2gWR0CdCpmNipeedX2UKGgGaAloD0MIXcXiNwVycECUhpRSlGgVTQIBaBZHQJ0LK7YkE9t1fZQoaAZoCWgPQwi9qN2vQmRwQJSGlFKUaBVNCQFoFkdAnQs0n1Fpf3V9lChoBmgJaA9DCDKSPULNpW1AlIaUUpRoFU0GAWgWR0CdCz/ATIvKdX2UKGgGaAloD0MI02hyMUb+ckCUhpRSlGgVS/toFkdAnQu5aiblR3V9lChoBmgJaA9DCLA9syTAAm9AlIaUUpRoFUvvaBZHQJ0Mesny/bl1fZQoaAZoCWgPQwgfLGNDN0MsQJSGlFKUaBVLy2gWR0CdDVgqVhTgdX2UKGgGaAloD0MImODUB5ILc0CUhpRSlGgVS/5oFkdAnQ1z81n/UHV9lChoBmgJaA9DCG/Vdahm/3BAlIaUUpRoFUv1aBZHQJ0NjbSJCSl1fZQoaAZoCWgPQwgIA8+9h1dwQJSGlFKUaBVNKgFoFkdAnQ4nnyNGVnV9lChoBmgJaA9DCAmlL4ScznJAlIaUUpRoFU1iAWgWR0CdDtnE2pAEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (223 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 226.43009371760058, "std_reward": 50.732459673683145, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T06:41:51.114096"}
|