|
import torch
|
|
import torch.nn as nn
|
|
from .fourier_features import FourierFeatures
|
|
|
|
class RegionModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
self.position_features = FourierFeatures(2, 256)
|
|
self.position_encoder = nn.Linear(256, 2048)
|
|
self.size_features = FourierFeatures(2, 256)
|
|
self.size_encoder = nn.Linear(256, 2048)
|
|
|
|
self.position_decoder = nn.Linear(2048, 2)
|
|
self.size_decoder = nn.Linear(2048, 2)
|
|
self.confidence_decoder = nn.Linear(2048, 1)
|
|
|
|
def encode_position(self, position):
|
|
return self.position_encoder(self.position_features(position))
|
|
|
|
def encode_size(self, size):
|
|
return self.size_encoder(self.size_features(size))
|
|
|
|
def decode_position(self, x):
|
|
return self.position_decoder(x)
|
|
|
|
def decode_size(self, x):
|
|
return self.size_decoder(x)
|
|
|
|
def decode_confidence(self, x):
|
|
return self.confidence_decoder(x)
|
|
|
|
def encode(self, position, size):
|
|
return torch.stack(
|
|
[self.encode_position(position), self.encode_size(size)], dim=0
|
|
)
|
|
|
|
def decode(self, position_logits, size_logits):
|
|
return (
|
|
self.decode_position(position_logits),
|
|
self.decode_size(size_logits),
|
|
self.decode_confidence(size_logits),
|
|
)
|
|
|