Shivraj8615 commited on
Commit
6fdc5c7
1 Parent(s): 2dde958

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.00 +/- 1.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d707428c40f2dbf7642a35c310d07d9abc1c6858f7a2d0372232df70c0b6a4ea
3
+ size 108028
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f24923bddc0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f24923baec0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680362333278368915,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3EbZPs0UKr1NKBU/3EbZPs0UKr1NKBU/3EbZPs0UKr1NKBU/3EbZPs0UKr1NKBU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQVyyvzh4pD/BrLE/Fhkvv1Xxjr/wnKG9A30fP+0Tmz9Fm1Q/2XplP6n/kT8HsKK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADcRtk+zRQqvU0oFT/xdbY70tYsvFqRKjzcRtk+zRQqvU0oFT/xdbY70tYsvFqRKjzcRtk+zRQqvU0oFT/xdbY70tYsvFqRKjzcRtk+zRQqvU0oFT/xdbY70tYsvFqRKjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.42436874 -0.04152374 0.5826462 ]\n [ 0.42436874 -0.04152374 0.5826462 ]\n [ 0.42436874 -0.04152374 0.5826462 ]\n [ 0.42436874 -0.04152374 0.5826462 ]]",
60
+ "desired_goal": "[[-1.3934404 1.2849188 1.3880845 ]\n [-0.68397653 -1.1167399 -0.07891262]\n [ 0.6230013 1.2115456 0.8304942 ]\n [ 0.89640576 1.1406146 -1.2709969 ]]",
61
+ "observation": "[[ 0.42436874 -0.04152374 0.5826462 0.00556826 -0.01054926 0.01041063]\n [ 0.42436874 -0.04152374 0.5826462 0.00556826 -0.01054926 0.01041063]\n [ 0.42436874 -0.04152374 0.5826462 0.00556826 -0.01054926 0.01041063]\n [ 0.42436874 -0.04152374 0.5826462 0.00556826 -0.01054926 0.01041063]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaBECvR3WI70DShs+0JQMPMI2Uz3DKJ492dsLvXKvk73pKJI+Q6nUOlsZLroVGMA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.03175488 -0.03999912 0.15164952]\n [ 0.0085804 0.05156589 0.07722618]\n [-0.03414521 -0.07211198 0.28546837]\n [ 0.00162248 -0.00066414 0.09379593]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsOWV620TBsCUhpRSlIwBbJRLMowBdJRHQKmpIbcXWOJ1fZQoaAZoCWgPQwhgrkUL0PYLwJSGlFKUaBVLMmgWR0CpqMzyBkI5dX2UKGgGaAloD0MITmGlgorKEsCUhpRSlGgVSzJoFkdAqah2Sr5qM3V9lChoBmgJaA9DCM7fhEIEPALAlIaUUpRoFUsyaBZHQKmoGhJRO1x1fZQoaAZoCWgPQwgQkZp2MU0PwJSGlFKUaBVLMmgWR0CpqnizLOiWdX2UKGgGaAloD0MIuvWaHhS0DMCUhpRSlGgVSzJoFkdAqaokMqjJuHV9lChoBmgJaA9DCFuWr8vwzxDAlIaUUpRoFUsyaBZHQKmpzbYbsGB1fZQoaAZoCWgPQwgRqtTsgeYgwJSGlFKUaBVLMmgWR0CpqXFZ5iVjdX2UKGgGaAloD0MIll6bjZVY+r+UhpRSlGgVSzJoFkdAqaujUAksz3V9lChoBmgJaA9DCMUaLnJPF/i/lIaUUpRoFUsyaBZHQKmrT336AOJ1fZQoaAZoCWgPQwi8QbRWtKkUwJSGlFKUaBVLMmgWR0Cpqvn3Dej3dX2UKGgGaAloD0MIdhvUfmuHAsCUhpRSlGgVSzJoFkdAqaqfv8ZUDXV9lChoBmgJaA9DCFmis8wipBTAlIaUUpRoFUsyaBZHQKms287IT5B1fZQoaAZoCWgPQwgRN6eSAeAPwJSGlFKUaBVLMmgWR0CprIZhjOLSdX2UKGgGaAloD0MIZr0YyommHcCUhpRSlGgVSzJoFkdAqawv3SKFZnV9lChoBmgJaA9DCF3BNuLJzgjAlIaUUpRoFUsyaBZHQKmr05CngpB1fZQoaAZoCWgPQwgonUgw1WwCwJSGlFKUaBVLMmgWR0CprgTDGcWkdX2UKGgGaAloD0MIm8sNhjosBsCUhpRSlGgVSzJoFkdAqa2vJA+pwXV9lChoBmgJaA9DCMZpiCr8+QTAlIaUUpRoFUsyaBZHQKmtWFVT72t1fZQoaAZoCWgPQwgbf6KyYS0UwJSGlFKUaBVLMmgWR0CprPwCbMHKdX2UKGgGaAloD0MI8YEd/wWSEsCUhpRSlGgVSzJoFkdAqa8t8ohIOHV9lChoBmgJaA9DCJJB7iJM4RHAlIaUUpRoFUsyaBZHQKmu2Eovzvt1fZQoaAZoCWgPQwgHCryTT0//v5SGlFKUaBVLMmgWR0CproGx+rlvdX2UKGgGaAloD0MIsn+eBgwyAcCUhpRSlGgVSzJoFkdAqa4lXaJyhnV9lChoBmgJaA9DCAUXK2owbQnAlIaUUpRoFUsyaBZHQKmwkuloDgZ1fZQoaAZoCWgPQwhnZfuQt1z1v5SGlFKUaBVLMmgWR0CpsD1VPva2dX2UKGgGaAloD0MINExtqYP8EsCUhpRSlGgVSzJoFkdAqa/mfAbhnHV9lChoBmgJaA9DCNNnB1xX/BTAlIaUUpRoFUsyaBZHQKmviuZkTYd1fZQoaAZoCWgPQwgaMEj6tErxv5SGlFKUaBVLMmgWR0CpscUh3aBadX2UKGgGaAloD0MIYRxcOuYsEMCUhpRSlGgVSzJoFkdAqbFvfbblBHV9lChoBmgJaA9DCBAhrpy9EwDAlIaUUpRoFUsyaBZHQKmxGJ66asp1fZQoaAZoCWgPQwhAwcWKGgzyv5SGlFKUaBVLMmgWR0CpsLxWDHwPdX2UKGgGaAloD0MIZapgVFKn7L+UhpRSlGgVSzJoFkdAqbL2dEsrd3V9lChoBmgJaA9DCDS/mgME8+y/lIaUUpRoFUsyaBZHQKmyoVHFxXJ1fZQoaAZoCWgPQwj8/s2LE08RwJSGlFKUaBVLMmgWR0CpskqQzUI+dX2UKGgGaAloD0MIXByVm6g1EcCUhpRSlGgVSzJoFkdAqbHuRLbpNnV9lChoBmgJaA9DCAFp/wOs1fK/lIaUUpRoFUsyaBZHQKm0LcfNiYt1fZQoaAZoCWgPQwgCEHf1KnIDwJSGlFKUaBVLMmgWR0Cps9hYvFm4dX2UKGgGaAloD0MIp8zNN6L7AcCUhpRSlGgVSzJoFkdAqbOBuuRs/XV9lChoBmgJaA9DCGPQCaGDLgLAlIaUUpRoFUsyaBZHQKmzJXTVlPJ1fZQoaAZoCWgPQwhvD0JAvkTwv5SGlFKUaBVLMmgWR0CptVZGKAJ+dX2UKGgGaAloD0MIFw6EZAGTC8CUhpRSlGgVSzJoFkdAqbUAn8baRXV9lChoBmgJaA9DCBiUaTS5uAXAlIaUUpRoFUsyaBZHQKm0qcOLBKt1fZQoaAZoCWgPQwhWgsXhzG8dwJSGlFKUaBVLMmgWR0CptE0xmCiAdX2UKGgGaAloD0MISzs1lxusAsCUhpRSlGgVSzJoFkdAqbZ0chkiEHV9lChoBmgJaA9DCEd0z7pGiwjAlIaUUpRoFUsyaBZHQKm2HueBg/l1fZQoaAZoCWgPQwi2vHK9bcYWwJSGlFKUaBVLMmgWR0CptchK15SndX2UKGgGaAloD0MImwKZnUXfEsCUhpRSlGgVSzJoFkdAqbVsFdLQHHV9lChoBmgJaA9DCPlkxXB1gArAlIaUUpRoFUsyaBZHQKm3mLronrp1fZQoaAZoCWgPQwgdIQN5dikQwJSGlFKUaBVLMmgWR0Cpt0MZP2wndX2UKGgGaAloD0MIsCDNWDQd7L+UhpRSlGgVSzJoFkdAqbbsSf16FHV9lChoBmgJaA9DCP5GO2743QrAlIaUUpRoFUsyaBZHQKm2kAn2Iwd1fZQoaAZoCWgPQwj8prBSQYUCwJSGlFKUaBVLMmgWR0CpuXUSqU/wdX2UKGgGaAloD0MIPWU1XU+0/b+UhpRSlGgVSzJoFkdAqbkgTZg5R3V9lChoBmgJaA9DCBB4YADhA/W/lIaUUpRoFUsyaBZHQKm4ykuYhMd1fZQoaAZoCWgPQwiVuI5xxUXpv5SGlFKUaBVLMmgWR0CpuG6r3j+8dX2UKGgGaAloD0MI2XbaGhEsAcCUhpRSlGgVSzJoFkdAqbtTM1TBInV9lChoBmgJaA9DCEOs/gjDwPS/lIaUUpRoFUsyaBZHQKm6/oRqXWx1fZQoaAZoCWgPQwj8/s2LE9/3v5SGlFKUaBVLMmgWR0CpuqiVB2OidX2UKGgGaAloD0MIdv9YiA6hHcCUhpRSlGgVSzJoFkdAqbpNAgPmP3V9lChoBmgJaA9DCEAS9u0kwgTAlIaUUpRoFUsyaBZHQKm9PXT3IuJ1fZQoaAZoCWgPQwgSiNf1C1YPwJSGlFKUaBVLMmgWR0CpvOjiOvMbdX2UKGgGaAloD0MIGVdcHJXbFMCUhpRSlGgVSzJoFkdAqbyTMNc4YXV9lChoBmgJaA9DCElJD0OrswfAlIaUUpRoFUsyaBZHQKm8N6wdKdx1fZQoaAZoCWgPQwiTbkvkgrP9v5SGlFKUaBVLMmgWR0Cpv0Ws7uD0dX2UKGgGaAloD0MIStBf6BHj+r+UhpRSlGgVSzJoFkdAqb7xFI/Z/XV9lChoBmgJaA9DCIpVgzC3qxHAlIaUUpRoFUsyaBZHQKm+myeqaPV1fZQoaAZoCWgPQwjS5c3hWm0BwJSGlFKUaBVLMmgWR0Cpvj/IjnmrdX2UKGgGaAloD0MIBn+/mC3Z8L+UhpRSlGgVSzJoFkdAqcFRzJZGKHV9lChoBmgJaA9DCEvnw7MEuRDAlIaUUpRoFUsyaBZHQKnA/aDf3vh1fZQoaAZoCWgPQwiP/SyWInntv5SGlFKUaBVLMmgWR0CpwKiUX531dX2UKGgGaAloD0MIILdfPlmxD8CUhpRSlGgVSzJoFkdAqcBOGEf1YnV9lChoBmgJaA9DCEVnmUUoBhPAlIaUUpRoFUsyaBZHQKnC5VQQ+U11fZQoaAZoCWgPQwgijQqcbPMQwJSGlFKUaBVLMmgWR0Cpwo+717IDdX2UKGgGaAloD0MITKlLxjHS/b+UhpRSlGgVSzJoFkdAqcI47FKkEnV9lChoBmgJaA9DCCDQmbSpihDAlIaUUpRoFUsyaBZHQKnB3KLbYbt1fZQoaAZoCWgPQwiOklfnGLAAwJSGlFKUaBVLMmgWR0CpxBF+/gzhdX2UKGgGaAloD0MIn3b4a7JG6r+UhpRSlGgVSzJoFkdAqcO71dxAB3V9lChoBmgJaA9DCHQJh97i4fK/lIaUUpRoFUsyaBZHQKnDZS2phnd1fZQoaAZoCWgPQwiiYMYUrDESwJSGlFKUaBVLMmgWR0CpwwjgqEvkdX2UKGgGaAloD0MIDt3sD5QbDcCUhpRSlGgVSzJoFkdAqcVBuIhyKnV9lChoBmgJaA9DCLqkarsJXg/AlIaUUpRoFUsyaBZHQKnE7CaZx711fZQoaAZoCWgPQwjPoKF/gisMwJSGlFKUaBVLMmgWR0CpxJVsLv1EdX2UKGgGaAloD0MIGejaF9CLAcCUhpRSlGgVSzJoFkdAqcQ5QBPsRnV9lChoBmgJaA9DCIHR5c3hChrAlIaUUpRoFUsyaBZHQKnGaIrvsqt1fZQoaAZoCWgPQwiRYoBEEwgHwJSGlFKUaBVLMmgWR0CpxhLfUF0QdX2UKGgGaAloD0MIqaPjamS3AsCUhpRSlGgVSzJoFkdAqcW8HQhOg3V9lChoBmgJaA9DCMnKL4Mxoum/lIaUUpRoFUsyaBZHQKnFX50KZ2J1fZQoaAZoCWgPQwgwYp8AihEJwJSGlFKUaBVLMmgWR0Cpx5Tjm0VrdX2UKGgGaAloD0MI4gSm07oN+L+UhpRSlGgVSzJoFkdAqcc/XoTwlXV9lChoBmgJaA9DCI/jh0ojpgPAlIaUUpRoFUsyaBZHQKnG6Lsrupl1fZQoaAZoCWgPQwiLNVzknm70v5SGlFKUaBVLMmgWR0CpxoyBkI5YdX2UKGgGaAloD0MI2J/E504QFMCUhpRSlGgVSzJoFkdAqci2tOmBOHV9lChoBmgJaA9DCNB9ObNdAQbAlIaUUpRoFUsyaBZHQKnIYQ04zad1fZQoaAZoCWgPQwhJ8lzfh0P9v5SGlFKUaBVLMmgWR0CpyAp22XsxdX2UKGgGaAloD0MIV0J3SZz1FcCUhpRSlGgVSzJoFkdAqceuCwr1/XV9lChoBmgJaA9DCMxCO6dZIPm/lIaUUpRoFUsyaBZHQKnKDcRDkU91fZQoaAZoCWgPQwjs+gW7YasUwJSGlFKUaBVLMmgWR0CpybhQ3xWldX2UKGgGaAloD0MIwVYJFofzFcCUhpRSlGgVSzJoFkdAqclhyEL6UXV9lChoBmgJaA9DCCTSNv5EhQnAlIaUUpRoFUsyaBZHQKnJBmQr+YN1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80dce540f382033e528ecc51e2cda04c94e28587bac74db1885ad7c8fc679f4a
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:488699c79a25d1ad534041c37dc0f973beb78b78c300132446f690304e172222
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f24923bddc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f24923baec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680362333278368915, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3EbZPs0UKr1NKBU/3EbZPs0UKr1NKBU/3EbZPs0UKr1NKBU/3EbZPs0UKr1NKBU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQVyyvzh4pD/BrLE/Fhkvv1Xxjr/wnKG9A30fP+0Tmz9Fm1Q/2XplP6n/kT8HsKK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADcRtk+zRQqvU0oFT/xdbY70tYsvFqRKjzcRtk+zRQqvU0oFT/xdbY70tYsvFqRKjzcRtk+zRQqvU0oFT/xdbY70tYsvFqRKjzcRtk+zRQqvU0oFT/xdbY70tYsvFqRKjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42436874 -0.04152374 0.5826462 ]\n [ 0.42436874 -0.04152374 0.5826462 ]\n [ 0.42436874 -0.04152374 0.5826462 ]\n [ 0.42436874 -0.04152374 0.5826462 ]]", "desired_goal": "[[-1.3934404 1.2849188 1.3880845 ]\n [-0.68397653 -1.1167399 -0.07891262]\n [ 0.6230013 1.2115456 0.8304942 ]\n [ 0.89640576 1.1406146 -1.2709969 ]]", "observation": "[[ 0.42436874 -0.04152374 0.5826462 0.00556826 -0.01054926 0.01041063]\n [ 0.42436874 -0.04152374 0.5826462 0.00556826 -0.01054926 0.01041063]\n [ 0.42436874 -0.04152374 0.5826462 0.00556826 -0.01054926 0.01041063]\n [ 0.42436874 -0.04152374 0.5826462 0.00556826 -0.01054926 0.01041063]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaBECvR3WI70DShs+0JQMPMI2Uz3DKJ492dsLvXKvk73pKJI+Q6nUOlsZLroVGMA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03175488 -0.03999912 0.15164952]\n [ 0.0085804 0.05156589 0.07722618]\n [-0.03414521 -0.07211198 0.28546837]\n [ 0.00162248 -0.00066414 0.09379593]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsOWV620TBsCUhpRSlIwBbJRLMowBdJRHQKmpIbcXWOJ1fZQoaAZoCWgPQwhgrkUL0PYLwJSGlFKUaBVLMmgWR0CpqMzyBkI5dX2UKGgGaAloD0MITmGlgorKEsCUhpRSlGgVSzJoFkdAqah2Sr5qM3V9lChoBmgJaA9DCM7fhEIEPALAlIaUUpRoFUsyaBZHQKmoGhJRO1x1fZQoaAZoCWgPQwgQkZp2MU0PwJSGlFKUaBVLMmgWR0CpqnizLOiWdX2UKGgGaAloD0MIuvWaHhS0DMCUhpRSlGgVSzJoFkdAqaokMqjJuHV9lChoBmgJaA9DCFuWr8vwzxDAlIaUUpRoFUsyaBZHQKmpzbYbsGB1fZQoaAZoCWgPQwgRqtTsgeYgwJSGlFKUaBVLMmgWR0CpqXFZ5iVjdX2UKGgGaAloD0MIll6bjZVY+r+UhpRSlGgVSzJoFkdAqaujUAksz3V9lChoBmgJaA9DCMUaLnJPF/i/lIaUUpRoFUsyaBZHQKmrT336AOJ1fZQoaAZoCWgPQwi8QbRWtKkUwJSGlFKUaBVLMmgWR0Cpqvn3Dej3dX2UKGgGaAloD0MIdhvUfmuHAsCUhpRSlGgVSzJoFkdAqaqfv8ZUDXV9lChoBmgJaA9DCFmis8wipBTAlIaUUpRoFUsyaBZHQKms287IT5B1fZQoaAZoCWgPQwgRN6eSAeAPwJSGlFKUaBVLMmgWR0CprIZhjOLSdX2UKGgGaAloD0MIZr0YyommHcCUhpRSlGgVSzJoFkdAqawv3SKFZnV9lChoBmgJaA9DCF3BNuLJzgjAlIaUUpRoFUsyaBZHQKmr05CngpB1fZQoaAZoCWgPQwgonUgw1WwCwJSGlFKUaBVLMmgWR0CprgTDGcWkdX2UKGgGaAloD0MIm8sNhjosBsCUhpRSlGgVSzJoFkdAqa2vJA+pwXV9lChoBmgJaA9DCMZpiCr8+QTAlIaUUpRoFUsyaBZHQKmtWFVT72t1fZQoaAZoCWgPQwgbf6KyYS0UwJSGlFKUaBVLMmgWR0CprPwCbMHKdX2UKGgGaAloD0MI8YEd/wWSEsCUhpRSlGgVSzJoFkdAqa8t8ohIOHV9lChoBmgJaA9DCJJB7iJM4RHAlIaUUpRoFUsyaBZHQKmu2Eovzvt1fZQoaAZoCWgPQwgHCryTT0//v5SGlFKUaBVLMmgWR0CproGx+rlvdX2UKGgGaAloD0MIsn+eBgwyAcCUhpRSlGgVSzJoFkdAqa4lXaJyhnV9lChoBmgJaA9DCAUXK2owbQnAlIaUUpRoFUsyaBZHQKmwkuloDgZ1fZQoaAZoCWgPQwhnZfuQt1z1v5SGlFKUaBVLMmgWR0CpsD1VPva2dX2UKGgGaAloD0MINExtqYP8EsCUhpRSlGgVSzJoFkdAqa/mfAbhnHV9lChoBmgJaA9DCNNnB1xX/BTAlIaUUpRoFUsyaBZHQKmviuZkTYd1fZQoaAZoCWgPQwgaMEj6tErxv5SGlFKUaBVLMmgWR0CpscUh3aBadX2UKGgGaAloD0MIYRxcOuYsEMCUhpRSlGgVSzJoFkdAqbFvfbblBHV9lChoBmgJaA9DCBAhrpy9EwDAlIaUUpRoFUsyaBZHQKmxGJ66asp1fZQoaAZoCWgPQwhAwcWKGgzyv5SGlFKUaBVLMmgWR0CpsLxWDHwPdX2UKGgGaAloD0MIZapgVFKn7L+UhpRSlGgVSzJoFkdAqbL2dEsrd3V9lChoBmgJaA9DCDS/mgME8+y/lIaUUpRoFUsyaBZHQKmyoVHFxXJ1fZQoaAZoCWgPQwj8/s2LE08RwJSGlFKUaBVLMmgWR0CpskqQzUI+dX2UKGgGaAloD0MIXByVm6g1EcCUhpRSlGgVSzJoFkdAqbHuRLbpNnV9lChoBmgJaA9DCAFp/wOs1fK/lIaUUpRoFUsyaBZHQKm0LcfNiYt1fZQoaAZoCWgPQwgCEHf1KnIDwJSGlFKUaBVLMmgWR0Cps9hYvFm4dX2UKGgGaAloD0MIp8zNN6L7AcCUhpRSlGgVSzJoFkdAqbOBuuRs/XV9lChoBmgJaA9DCGPQCaGDLgLAlIaUUpRoFUsyaBZHQKmzJXTVlPJ1fZQoaAZoCWgPQwhvD0JAvkTwv5SGlFKUaBVLMmgWR0CptVZGKAJ+dX2UKGgGaAloD0MIFw6EZAGTC8CUhpRSlGgVSzJoFkdAqbUAn8baRXV9lChoBmgJaA9DCBiUaTS5uAXAlIaUUpRoFUsyaBZHQKm0qcOLBKt1fZQoaAZoCWgPQwhWgsXhzG8dwJSGlFKUaBVLMmgWR0CptE0xmCiAdX2UKGgGaAloD0MISzs1lxusAsCUhpRSlGgVSzJoFkdAqbZ0chkiEHV9lChoBmgJaA9DCEd0z7pGiwjAlIaUUpRoFUsyaBZHQKm2HueBg/l1fZQoaAZoCWgPQwi2vHK9bcYWwJSGlFKUaBVLMmgWR0CptchK15SndX2UKGgGaAloD0MImwKZnUXfEsCUhpRSlGgVSzJoFkdAqbVsFdLQHHV9lChoBmgJaA9DCPlkxXB1gArAlIaUUpRoFUsyaBZHQKm3mLronrp1fZQoaAZoCWgPQwgdIQN5dikQwJSGlFKUaBVLMmgWR0Cpt0MZP2wndX2UKGgGaAloD0MIsCDNWDQd7L+UhpRSlGgVSzJoFkdAqbbsSf16FHV9lChoBmgJaA9DCP5GO2743QrAlIaUUpRoFUsyaBZHQKm2kAn2Iwd1fZQoaAZoCWgPQwj8prBSQYUCwJSGlFKUaBVLMmgWR0CpuXUSqU/wdX2UKGgGaAloD0MIPWU1XU+0/b+UhpRSlGgVSzJoFkdAqbkgTZg5R3V9lChoBmgJaA9DCBB4YADhA/W/lIaUUpRoFUsyaBZHQKm4ykuYhMd1fZQoaAZoCWgPQwiVuI5xxUXpv5SGlFKUaBVLMmgWR0CpuG6r3j+8dX2UKGgGaAloD0MI2XbaGhEsAcCUhpRSlGgVSzJoFkdAqbtTM1TBInV9lChoBmgJaA9DCEOs/gjDwPS/lIaUUpRoFUsyaBZHQKm6/oRqXWx1fZQoaAZoCWgPQwj8/s2LE9/3v5SGlFKUaBVLMmgWR0CpuqiVB2OidX2UKGgGaAloD0MIdv9YiA6hHcCUhpRSlGgVSzJoFkdAqbpNAgPmP3V9lChoBmgJaA9DCEAS9u0kwgTAlIaUUpRoFUsyaBZHQKm9PXT3IuJ1fZQoaAZoCWgPQwgSiNf1C1YPwJSGlFKUaBVLMmgWR0CpvOjiOvMbdX2UKGgGaAloD0MIGVdcHJXbFMCUhpRSlGgVSzJoFkdAqbyTMNc4YXV9lChoBmgJaA9DCElJD0OrswfAlIaUUpRoFUsyaBZHQKm8N6wdKdx1fZQoaAZoCWgPQwiTbkvkgrP9v5SGlFKUaBVLMmgWR0Cpv0Ws7uD0dX2UKGgGaAloD0MIStBf6BHj+r+UhpRSlGgVSzJoFkdAqb7xFI/Z/XV9lChoBmgJaA9DCIpVgzC3qxHAlIaUUpRoFUsyaBZHQKm+myeqaPV1fZQoaAZoCWgPQwjS5c3hWm0BwJSGlFKUaBVLMmgWR0Cpvj/IjnmrdX2UKGgGaAloD0MIBn+/mC3Z8L+UhpRSlGgVSzJoFkdAqcFRzJZGKHV9lChoBmgJaA9DCEvnw7MEuRDAlIaUUpRoFUsyaBZHQKnA/aDf3vh1fZQoaAZoCWgPQwiP/SyWInntv5SGlFKUaBVLMmgWR0CpwKiUX531dX2UKGgGaAloD0MIILdfPlmxD8CUhpRSlGgVSzJoFkdAqcBOGEf1YnV9lChoBmgJaA9DCEVnmUUoBhPAlIaUUpRoFUsyaBZHQKnC5VQQ+U11fZQoaAZoCWgPQwgijQqcbPMQwJSGlFKUaBVLMmgWR0Cpwo+717IDdX2UKGgGaAloD0MITKlLxjHS/b+UhpRSlGgVSzJoFkdAqcI47FKkEnV9lChoBmgJaA9DCCDQmbSpihDAlIaUUpRoFUsyaBZHQKnB3KLbYbt1fZQoaAZoCWgPQwiOklfnGLAAwJSGlFKUaBVLMmgWR0CpxBF+/gzhdX2UKGgGaAloD0MIn3b4a7JG6r+UhpRSlGgVSzJoFkdAqcO71dxAB3V9lChoBmgJaA9DCHQJh97i4fK/lIaUUpRoFUsyaBZHQKnDZS2phnd1fZQoaAZoCWgPQwiiYMYUrDESwJSGlFKUaBVLMmgWR0CpwwjgqEvkdX2UKGgGaAloD0MIDt3sD5QbDcCUhpRSlGgVSzJoFkdAqcVBuIhyKnV9lChoBmgJaA9DCLqkarsJXg/AlIaUUpRoFUsyaBZHQKnE7CaZx711fZQoaAZoCWgPQwjPoKF/gisMwJSGlFKUaBVLMmgWR0CpxJVsLv1EdX2UKGgGaAloD0MIGejaF9CLAcCUhpRSlGgVSzJoFkdAqcQ5QBPsRnV9lChoBmgJaA9DCIHR5c3hChrAlIaUUpRoFUsyaBZHQKnGaIrvsqt1fZQoaAZoCWgPQwiRYoBEEwgHwJSGlFKUaBVLMmgWR0CpxhLfUF0QdX2UKGgGaAloD0MIqaPjamS3AsCUhpRSlGgVSzJoFkdAqcW8HQhOg3V9lChoBmgJaA9DCMnKL4Mxoum/lIaUUpRoFUsyaBZHQKnFX50KZ2J1fZQoaAZoCWgPQwgwYp8AihEJwJSGlFKUaBVLMmgWR0Cpx5Tjm0VrdX2UKGgGaAloD0MI4gSm07oN+L+UhpRSlGgVSzJoFkdAqcc/XoTwlXV9lChoBmgJaA9DCI/jh0ojpgPAlIaUUpRoFUsyaBZHQKnG6Lsrupl1fZQoaAZoCWgPQwiLNVzknm70v5SGlFKUaBVLMmgWR0CpxoyBkI5YdX2UKGgGaAloD0MI2J/E504QFMCUhpRSlGgVSzJoFkdAqci2tOmBOHV9lChoBmgJaA9DCNB9ObNdAQbAlIaUUpRoFUsyaBZHQKnIYQ04zad1fZQoaAZoCWgPQwhJ8lzfh0P9v5SGlFKUaBVLMmgWR0CpyAp22XsxdX2UKGgGaAloD0MIV0J3SZz1FcCUhpRSlGgVSzJoFkdAqceuCwr1/XV9lChoBmgJaA9DCMxCO6dZIPm/lIaUUpRoFUsyaBZHQKnKDcRDkU91fZQoaAZoCWgPQwjs+gW7YasUwJSGlFKUaBVLMmgWR0CpybhQ3xWldX2UKGgGaAloD0MIwVYJFofzFcCUhpRSlGgVSzJoFkdAqclhyEL6UXV9lChoBmgJaA9DCCTSNv5EhQnAlIaUUpRoFUsyaBZHQKnJBmQr+YN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (529 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.996543476637453, "std_reward": 1.710868719256862, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T16:13:57.936978"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:657aa0a7ee05ff02829b94fff6c486a75ace75f28bd4f480d704992b7f7a4b23
3
+ size 3056