Shivraj8615
commited on
Commit
•
55c9e65
1
Parent(s):
df817c9
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1567.75 +/- 161.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a362066342e2e4278344b182b55d520f44c4c913862af112eb3b02321c0a75db
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f24923bd670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24923bd700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24923bd790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24923bd820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f24923bd8b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f24923bd940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24923bd9d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24923bda60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f24923bdaf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24923bdb80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24923bdc10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24923bdca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f24923bad00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1680358181579633579,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGAvjT83v4y/DPXIPsUshD9XyAu+IucCP6RpcL8F1QnAXF72O5DU1L8+xi0/uNnfv/t2Z7/ZGu8+uaMlP8IfFD4tuCm9iR9kPwz8OD/Ki4u/gvciQHtNrD3IrYM+ZlTyP0ZZmL+86xk/eicZwGSDlL8weC0/KbENvYnYDT/PaJs+YsqhvyMzgT+Bs02/JPlFvwTERr+Hq8K/3jdPv6WE+rtXeEm+OLq+PnBjKj8qJdM9lPHCP3jl97zl0R+/h3ACwOxUXb8ikZ4+lurCPxkdmD9GWZi/vOsZP3onGcBkg5S/r2NFP/jYf7+RFOI+uQtDP2YXAEAQjv8+zG+RPZrHVr9Aoi4/I6nEPvNJDb+3mas/IMZVPw7a/TzSOco+He6LPnD9kT7hkNq+NGAOPlslx78JvYU/eMRjPz6gFECCkpa+RlmYv7zrGT9M9NU+56NcP6aHRT9vPFi+UXYUP5UXUb8ik5W/dtjyPi0E6L8q+UQ/d07jvufYiT9Tn0+//Jxtvqu/mL+rrqA9OMYpPwo86jv9oNW/uAm+vkk9P8Bu8B8+DdwEP6GMUj/55Gu/1RkLvOIVVz9949S/TPTVPmSDlL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEN5k0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfbvwvQAAAAAKLPO/AAAAAF/0SjwAAAAADP3vPwAAAABlBvK8AAAAAB9q3T8AAAAAiuW0PQAAAACl7OK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsrX9tAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNZqHr0AAAAAgPLjvwAAAADzf+W9AAAAACKm8T8AAAAApUDqPQAAAACjUd0/AAAAAJTtcz0AAAAAyKLrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHgodbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID5LFM8AAAAAMXx+78AAAAAK3XduwAAAACQlwBAAAAAANXRkL0AAAAABrfgPwAAAABpC4U9AAAAAEim4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJbi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA84yevAAAAADYsdm/AAAAALcXqDsAAAAAgKPqPwAAAAAAVNW9AAAAAAI28z8AAAAAnUXCvAAAAAC3ON+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUH72dupCOMAWyUTegDjAF0lEdAqwMe6shgV3V9lChoBkdAmFX5qASWaGgHTegDaAhHQKsHgz0HyEt1fZQoaAZHQJoZvMV1wHZoB03oA2gIR0CrCEMmOU+tdX2UKGgGR0CZJPxe9i+daAdN6ANoCEdAqwqI4VARkHV9lChoBkdAmL3XtrsSkGgHTegDaAhHQKsTNllsguB1fZQoaAZHQJWKQhpxm05oB03oA2gIR0CrF7gJC0F9dX2UKGgGR0CZjNccENe/aAdN6ANoCEdAqxhxooNNJ3V9lChoBkdAmZqccdYGMWgHTegDaAhHQKsaKFdLQHB1fZQoaAZHQJsjL/IbOu9oB03oA2gIR0CrH9YHgP3BdX2UKGgGR0CbPcigTRICaAdN6ANoCEdAqyQ5JkGzKXV9lChoBkdAlr+VYhdMTWgHTegDaAhHQKsk72eQMhJ1fZQoaAZHQJsu+fthNM5oB03oA2gIR0CrJqi/47A+dX2UKGgGR0CZdnhaC+URaAdN6ANoCEdAqy69zuF6A3V9lChoBkdAmSgO9zwMIGgHTegDaAhHQKs0RKraM751fZQoaAZHQJai0U0vXbxoB03oA2gIR0CrNQYCyQgcdX2UKGgGR0CYSbAJLM9saAdN6ANoCEdAqzbIc7yQP3V9lChoBkdAjz+jD0lJH2gHTQIDaAhHQKs5qzyjHn51fZQoaAZHQJe5/kxREWtoB03oA2gIR0CrQRTVc2R8dX2UKGgGR0CWQOhL5AQhaAdN6ANoCEdAq0HOAd4mkXV9lChoBkdAmp3ZhWo3rGgHTegDaAhHQKtDlfTCtRx1fZQoaAZHQJY7fxpcophoB03oA2gIR0CrRrRubZvldX2UKGgGR0CZkjbj94u9aAdN6ANoCEdAq1F9WluWKXV9lChoBkdAmXivcSGrS2gHTegDaAhHQKtSP1Gsmv51fZQoaAZHQJuZfaRISUVoB03oA2gIR0CrVANbTtsvdX2UKGgGR0CUzTbgCOm0aAdN6ANoCEdAq1bnnjhky3V9lChoBkdAmCuUqx1PnGgHTegDaAhHQKteQJ/oaDR1fZQoaAZHQJes9FnZkCpoB03oA2gIR0CrXv0tI066dX2UKGgGR0CZS962OQyRaAdN6ANoCEdAq2DK+6Ae73V9lChoBkdAmNdCE+Pik2gHTegDaAhHQKtjruVopQV1fZQoaAZHQJkkSZCv5gxoB03oA2gIR0CrbioAGSpzdX2UKGgGR0CWLnbfP5YYaAdN6ANoCEdAq29Hl8w6AHV9lChoBkdAlq67yhBZ6mgHTegDaAhHQKtxAshgVoJ1fZQoaAZHQJTAj7tRekZoB03oA2gIR0Crc+Lc9GI9dX2UKGgGR0CYKvvsqrimaAdN6ANoCEdAq3tL/82rGXV9lChoBkdAlrv0iMYMv2gHTegDaAhHQKt8CN9YwIt1fZQoaAZHQJbcu8yvcJtoB03oA2gIR0CrfdT2exwAdX2UKGgGR0CYyA7UG3WnaAdN6ANoCEdAq4C6UJOWSnV9lChoBkdAmIh6N+9almgHTegDaAhHQKuKZOqvNeN1fZQoaAZHQJmpOfBeok1oB03oA2gIR0Cri46g2606dX2UKGgGR0CU4FrwOOKgaAdN6ANoCEdAq44STbFju3V9lChoBkdAmN7jqKP4mGgHTegDaAhHQKuQ9b3XZoR1fZQoaAZHQJrXwCJXQt1oB03oA2gIR0CrmFjCYTkAdX2UKGgGR0CTSKrgwXZXaAdN6ANoCEdAq5kTAWSEDnV9lChoBkdAlfN8neBQN2gHTegDaAhHQKua0KhL5AR1fZQoaAZHQJi5AGjbi6xoB03oA2gIR0CrnaxQizLPdX2UKGgGR0CW4XbA1vVFaAdN6ANoCEdAq6ZYz+FUQ3V9lChoBkdAm/mUqUeMh2gHTegDaAhHQKuneDnNgSh1fZQoaAZHQJiDlPgvUSZoB03oA2gIR0CrqilDv3JxdX2UKGgGR0CbbJ9Jz1braAdN6ANoCEdAq63CWw/xD3V9lChoBkdAmY4b3bmEG2gHTegDaAhHQKu1GeyRjjJ1fZQoaAZHQJuhYOc2BJ9oB03oA2gIR0CrtdNbkfcOdX2UKGgGR0CasNdvbXYlaAdN6ANoCEdAq7ebCxeLN3V9lChoBkdAlisy8OCoTGgHTegDaAhHQKu6bIwM6R11fZQoaAZHQJsBm6Zpi7VoB03oA2gIR0CrwlVmJ3xGdX2UKGgGR0CaucWilBQfaAdN6ANoCEdAq8NWLNwBHXV9lChoBkdAmB/gPZqVQmgHTegDaAhHQKvF43BpHqh1fZQoaAZHQJvV9JK8L8doB03oA2gIR0CrykLCemNzdX2UKGgGR0CbrWUwi7kGaAdN6ANoCEdAq9Gb6vaDf3V9lChoBkdAk2eDJU5uImgHTegDaAhHQKvSWgMc6vJ1fZQoaAZHQJcN1LeyiVVoB03oA2gIR0Cr1BWd/axpdX2UKGgGR0CaQaN7SiM6aAdN6ANoCEdAq9cBlcyFf3V9lChoBkdAmJF6IrOJL2gHTegDaAhHQKveUdvKlpJ1fZQoaAZHQJpb2SeRPoFoB03oA2gIR0Cr315r56+ndX2UKGgGR0CY1YKdhAnlaAdN6ANoCEdAq+HaWX1J2HV9lChoBkdAmEhBEBsAN2gHTegDaAhHQKvmK7mMfih1fZQoaAZHQJs4YXSBshxoB03oA2gIR0Cr7nQV0tAcdX2UKGgGR0CcBEVk+X7caAdN6ANoCEdAq+8y13MY/HV9lChoBkdAmFsYi5d4V2gHTegDaAhHQKvw82sq8UV1fZQoaAZHQJl17IV/MGJoB03oA2gIR0Cr89/J3gUDdX2UKGgGR0CZzZ3CKrJbaAdN6ANoCEdAq/slWZJCjXV9lChoBkdAmwJlkMCtBGgHTegDaAhHQKv72L9deIF1fZQoaAZHQJfhvwx33YdoB03oA2gIR0Cr/cNATqSpdX2UKGgGR0CZtcoAn2IwaAdN6ANoCEdArAHnHT7VKHV9lChoBkdAkt8jIq9XcWgHTegDaAhHQKwLJ+jua4N1fZQoaAZHQJsRKK8+Ro1oB03oA2gIR0CsC9zrNW2gdX2UKGgGR0CacLWNFSbZaAdN6ANoCEdArA2Ud1dPcnV9lChoBkdAm+FY/eLvTmgHTegDaAhHQKwQbmK64Dt1fZQoaAZHQJuGNPN3W4FoB03oA2gIR0CsF7QdCE6DdX2UKGgGR0CZIfr6tT1kaAdN6ANoCEdArBh3CdjG1nV9lChoBkdAm8/7VvuPWGgHTegDaAhHQKwaJLA57w91fZQoaAZHQJe0p48lolFoB03oA2gIR0CsHa/VI7NjdX2UKGgGR0CbiUGwRoRJaAdN6ANoCEdArClCN4qwyXV9lChoBkdAmYHfxYq5LGgHTegDaAhHQKwqV83Mpw11fZQoaAZHQIrx2YUnG85oB02kAmgIR0CsKyIDYAbRdX2UKGgGR0CZm/Mm4RVZaAdN6ANoCEdArC0WnsLORnV9lChoBkdAlQm9yT6i02gHTegDaAhHQKw4QCoS+QF1fZQoaAZHQJZ4iWUr08NoB03oA2gIR0CsOPyJbdJrdX2UKGgGR0CLTvjCpFTeaAdN6ANoCEdArDl/oNd7fHV9lChoBkdAmDhPVRUFS2gHTegDaAhHQKw6tR64Uex1fZQoaAZHQJs7SPdVNpNoB03oA2gIR0CsSGVqesgddX2UKGgGR0CZIXawUxmDaAdN6ANoCEdArEkl/Ue+23V9lChoBkdAkEX+YhMaj2gHTegDaAhHQKxJppUPxx11fZQoaAZHQJdU71+RYA9oB03oA2gIR0CsSu4Xwb2ldX2UKGgGR0CWNWQa72+PaAdN6ANoCEdArFUgGyHEdnV9lChoBkdAkXCPnjhky2gHTegDaAhHQKxV1mDDjzZ1fZQoaAZHQJAlfKuB+WpoB03oA2gIR0CsVlgLJCBxdX2UKGgGR0CXKIA2hqTKaAdN6ANoCEdArFeZ7HAAQ3V9lChoBkdAmGUEORT0hGgHTegDaAhHQKxlXxFy7wt1fZQoaAZHQJgUbsE7nxJoB03oA2gIR0CsZhZVwPy1dX2UKGgGR0CaWoqQA+6iaAdN6ANoCEdArGaa9M9KVnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce8de5ff27b3819d15ab1b46ec260e0a7f42f533a5a83032674c9b1ece37182c
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9e15bc780e51daa4aa639016faca342ddb845006399a035ac6facb8759317b9
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24923bd670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24923bd700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24923bd790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24923bd820>", "_build": "<function ActorCriticPolicy._build at 0x7f24923bd8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f24923bd940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24923bd9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24923bda60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f24923bdaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24923bdb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24923bdc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24923bdca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f24923bad00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680358181579633579, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGAvjT83v4y/DPXIPsUshD9XyAu+IucCP6RpcL8F1QnAXF72O5DU1L8+xi0/uNnfv/t2Z7/ZGu8+uaMlP8IfFD4tuCm9iR9kPwz8OD/Ki4u/gvciQHtNrD3IrYM+ZlTyP0ZZmL+86xk/eicZwGSDlL8weC0/KbENvYnYDT/PaJs+YsqhvyMzgT+Bs02/JPlFvwTERr+Hq8K/3jdPv6WE+rtXeEm+OLq+PnBjKj8qJdM9lPHCP3jl97zl0R+/h3ACwOxUXb8ikZ4+lurCPxkdmD9GWZi/vOsZP3onGcBkg5S/r2NFP/jYf7+RFOI+uQtDP2YXAEAQjv8+zG+RPZrHVr9Aoi4/I6nEPvNJDb+3mas/IMZVPw7a/TzSOco+He6LPnD9kT7hkNq+NGAOPlslx78JvYU/eMRjPz6gFECCkpa+RlmYv7zrGT9M9NU+56NcP6aHRT9vPFi+UXYUP5UXUb8ik5W/dtjyPi0E6L8q+UQ/d07jvufYiT9Tn0+//Jxtvqu/mL+rrqA9OMYpPwo86jv9oNW/uAm+vkk9P8Bu8B8+DdwEP6GMUj/55Gu/1RkLvOIVVz9949S/TPTVPmSDlL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEN5k0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfbvwvQAAAAAKLPO/AAAAAF/0SjwAAAAADP3vPwAAAABlBvK8AAAAAB9q3T8AAAAAiuW0PQAAAACl7OK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsrX9tAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNZqHr0AAAAAgPLjvwAAAADzf+W9AAAAACKm8T8AAAAApUDqPQAAAACjUd0/AAAAAJTtcz0AAAAAyKLrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHgodbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID5LFM8AAAAAMXx+78AAAAAK3XduwAAAACQlwBAAAAAANXRkL0AAAAABrfgPwAAAABpC4U9AAAAAEim4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJbi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA84yevAAAAADYsdm/AAAAALcXqDsAAAAAgKPqPwAAAAAAVNW9AAAAAAI28z8AAAAAnUXCvAAAAAC3ON+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUH72dupCOMAWyUTegDjAF0lEdAqwMe6shgV3V9lChoBkdAmFX5qASWaGgHTegDaAhHQKsHgz0HyEt1fZQoaAZHQJoZvMV1wHZoB03oA2gIR0CrCEMmOU+tdX2UKGgGR0CZJPxe9i+daAdN6ANoCEdAqwqI4VARkHV9lChoBkdAmL3XtrsSkGgHTegDaAhHQKsTNllsguB1fZQoaAZHQJWKQhpxm05oB03oA2gIR0CrF7gJC0F9dX2UKGgGR0CZjNccENe/aAdN6ANoCEdAqxhxooNNJ3V9lChoBkdAmZqccdYGMWgHTegDaAhHQKsaKFdLQHB1fZQoaAZHQJsjL/IbOu9oB03oA2gIR0CrH9YHgP3BdX2UKGgGR0CbPcigTRICaAdN6ANoCEdAqyQ5JkGzKXV9lChoBkdAlr+VYhdMTWgHTegDaAhHQKsk72eQMhJ1fZQoaAZHQJsu+fthNM5oB03oA2gIR0CrJqi/47A+dX2UKGgGR0CZdnhaC+URaAdN6ANoCEdAqy69zuF6A3V9lChoBkdAmSgO9zwMIGgHTegDaAhHQKs0RKraM751fZQoaAZHQJai0U0vXbxoB03oA2gIR0CrNQYCyQgcdX2UKGgGR0CYSbAJLM9saAdN6ANoCEdAqzbIc7yQP3V9lChoBkdAjz+jD0lJH2gHTQIDaAhHQKs5qzyjHn51fZQoaAZHQJe5/kxREWtoB03oA2gIR0CrQRTVc2R8dX2UKGgGR0CWQOhL5AQhaAdN6ANoCEdAq0HOAd4mkXV9lChoBkdAmp3ZhWo3rGgHTegDaAhHQKtDlfTCtRx1fZQoaAZHQJY7fxpcophoB03oA2gIR0CrRrRubZvldX2UKGgGR0CZkjbj94u9aAdN6ANoCEdAq1F9WluWKXV9lChoBkdAmXivcSGrS2gHTegDaAhHQKtSP1Gsmv51fZQoaAZHQJuZfaRISUVoB03oA2gIR0CrVANbTtsvdX2UKGgGR0CUzTbgCOm0aAdN6ANoCEdAq1bnnjhky3V9lChoBkdAmCuUqx1PnGgHTegDaAhHQKteQJ/oaDR1fZQoaAZHQJes9FnZkCpoB03oA2gIR0CrXv0tI066dX2UKGgGR0CZS962OQyRaAdN6ANoCEdAq2DK+6Ae73V9lChoBkdAmNdCE+Pik2gHTegDaAhHQKtjruVopQV1fZQoaAZHQJkkSZCv5gxoB03oA2gIR0CrbioAGSpzdX2UKGgGR0CWLnbfP5YYaAdN6ANoCEdAq29Hl8w6AHV9lChoBkdAlq67yhBZ6mgHTegDaAhHQKtxAshgVoJ1fZQoaAZHQJTAj7tRekZoB03oA2gIR0Crc+Lc9GI9dX2UKGgGR0CYKvvsqrimaAdN6ANoCEdAq3tL/82rGXV9lChoBkdAlrv0iMYMv2gHTegDaAhHQKt8CN9YwIt1fZQoaAZHQJbcu8yvcJtoB03oA2gIR0CrfdT2exwAdX2UKGgGR0CYyA7UG3WnaAdN6ANoCEdAq4C6UJOWSnV9lChoBkdAmIh6N+9almgHTegDaAhHQKuKZOqvNeN1fZQoaAZHQJmpOfBeok1oB03oA2gIR0Cri46g2606dX2UKGgGR0CU4FrwOOKgaAdN6ANoCEdAq44STbFju3V9lChoBkdAmN7jqKP4mGgHTegDaAhHQKuQ9b3XZoR1fZQoaAZHQJrXwCJXQt1oB03oA2gIR0CrmFjCYTkAdX2UKGgGR0CTSKrgwXZXaAdN6ANoCEdAq5kTAWSEDnV9lChoBkdAlfN8neBQN2gHTegDaAhHQKua0KhL5AR1fZQoaAZHQJi5AGjbi6xoB03oA2gIR0CrnaxQizLPdX2UKGgGR0CW4XbA1vVFaAdN6ANoCEdAq6ZYz+FUQ3V9lChoBkdAm/mUqUeMh2gHTegDaAhHQKuneDnNgSh1fZQoaAZHQJiDlPgvUSZoB03oA2gIR0CrqilDv3JxdX2UKGgGR0CbbJ9Jz1braAdN6ANoCEdAq63CWw/xD3V9lChoBkdAmY4b3bmEG2gHTegDaAhHQKu1GeyRjjJ1fZQoaAZHQJuhYOc2BJ9oB03oA2gIR0CrtdNbkfcOdX2UKGgGR0CasNdvbXYlaAdN6ANoCEdAq7ebCxeLN3V9lChoBkdAlisy8OCoTGgHTegDaAhHQKu6bIwM6R11fZQoaAZHQJsBm6Zpi7VoB03oA2gIR0CrwlVmJ3xGdX2UKGgGR0CaucWilBQfaAdN6ANoCEdAq8NWLNwBHXV9lChoBkdAmB/gPZqVQmgHTegDaAhHQKvF43BpHqh1fZQoaAZHQJvV9JK8L8doB03oA2gIR0CrykLCemNzdX2UKGgGR0CbrWUwi7kGaAdN6ANoCEdAq9Gb6vaDf3V9lChoBkdAk2eDJU5uImgHTegDaAhHQKvSWgMc6vJ1fZQoaAZHQJcN1LeyiVVoB03oA2gIR0Cr1BWd/axpdX2UKGgGR0CaQaN7SiM6aAdN6ANoCEdAq9cBlcyFf3V9lChoBkdAmJF6IrOJL2gHTegDaAhHQKveUdvKlpJ1fZQoaAZHQJpb2SeRPoFoB03oA2gIR0Cr315r56+ndX2UKGgGR0CY1YKdhAnlaAdN6ANoCEdAq+HaWX1J2HV9lChoBkdAmEhBEBsAN2gHTegDaAhHQKvmK7mMfih1fZQoaAZHQJs4YXSBshxoB03oA2gIR0Cr7nQV0tAcdX2UKGgGR0CcBEVk+X7caAdN6ANoCEdAq+8y13MY/HV9lChoBkdAmFsYi5d4V2gHTegDaAhHQKvw82sq8UV1fZQoaAZHQJl17IV/MGJoB03oA2gIR0Cr89/J3gUDdX2UKGgGR0CZzZ3CKrJbaAdN6ANoCEdAq/slWZJCjXV9lChoBkdAmwJlkMCtBGgHTegDaAhHQKv72L9deIF1fZQoaAZHQJfhvwx33YdoB03oA2gIR0Cr/cNATqSpdX2UKGgGR0CZtcoAn2IwaAdN6ANoCEdArAHnHT7VKHV9lChoBkdAkt8jIq9XcWgHTegDaAhHQKwLJ+jua4N1fZQoaAZHQJsRKK8+Ro1oB03oA2gIR0CsC9zrNW2gdX2UKGgGR0CacLWNFSbZaAdN6ANoCEdArA2Ud1dPcnV9lChoBkdAm+FY/eLvTmgHTegDaAhHQKwQbmK64Dt1fZQoaAZHQJuGNPN3W4FoB03oA2gIR0CsF7QdCE6DdX2UKGgGR0CZIfr6tT1kaAdN6ANoCEdArBh3CdjG1nV9lChoBkdAm8/7VvuPWGgHTegDaAhHQKwaJLA57w91fZQoaAZHQJe0p48lolFoB03oA2gIR0CsHa/VI7NjdX2UKGgGR0CbiUGwRoRJaAdN6ANoCEdArClCN4qwyXV9lChoBkdAmYHfxYq5LGgHTegDaAhHQKwqV83Mpw11fZQoaAZHQIrx2YUnG85oB02kAmgIR0CsKyIDYAbRdX2UKGgGR0CZm/Mm4RVZaAdN6ANoCEdArC0WnsLORnV9lChoBkdAlQm9yT6i02gHTegDaAhHQKw4QCoS+QF1fZQoaAZHQJZ4iWUr08NoB03oA2gIR0CsOPyJbdJrdX2UKGgGR0CLTvjCpFTeaAdN6ANoCEdArDl/oNd7fHV9lChoBkdAmDhPVRUFS2gHTegDaAhHQKw6tR64Uex1fZQoaAZHQJs7SPdVNpNoB03oA2gIR0CsSGVqesgddX2UKGgGR0CZIXawUxmDaAdN6ANoCEdArEkl/Ue+23V9lChoBkdAkEX+YhMaj2gHTegDaAhHQKxJppUPxx11fZQoaAZHQJdU71+RYA9oB03oA2gIR0CsSu4Xwb2ldX2UKGgGR0CWNWQa72+PaAdN6ANoCEdArFUgGyHEdnV9lChoBkdAkXCPnjhky2gHTegDaAhHQKxV1mDDjzZ1fZQoaAZHQJAlfKuB+WpoB03oA2gIR0CsVlgLJCBxdX2UKGgGR0CXKIA2hqTKaAdN6ANoCEdArFeZ7HAAQ3V9lChoBkdAmGUEORT0hGgHTegDaAhHQKxlXxFy7wt1fZQoaAZHQJgUbsE7nxJoB03oA2gIR0CsZhZVwPy1dX2UKGgGR0CaWoqQA+6iaAdN6ANoCEdArGaa9M9KVnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39b36b1e58587445c7f69636a58220b7a0c8f30d59573ba5b99fdc68dfb399b6
|
3 |
+
size 1096347
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1567.74551544587, "std_reward": 161.5543967365443, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T15:18:00.992089"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:451b91e8ea8eecd9e75bc55a9b4e48571b02028b114718133a7d70a5899b3f28
|
3 |
+
size 2136
|