Shivraj8615 commited on
Commit
24d6343
1 Parent(s): 7170092

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.68 +/- 0.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1542e3a532bdda4a9ac8df7ed9ed97ac56a81111ae2f1f0d2981c0b3db7dfef
3
+ size 108112
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5e1b0125e0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f5e1b0135c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1500000,
45
+ "_total_timesteps": 1500000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680377640767632649,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8e3iPtsVz7zTWBQ/8e3iPtsVz7zTWBQ/8e3iPtsVz7zTWBQ/8e3iPtsVz7zTWBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfJFqv9ijnL8ZtsE/tj6fPxaig7/IpAy+/AisPwvyWz9Z4tk/TkRvv04TU79B5au+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADx7eI+2xXPvNNYFD+oUHC3+4c7u6cx2Lvx7eI+2xXPvNNYFD+oUHC3+4c7u6cx2Lvx7eI+2xXPvNNYFD+oUHC3+4c7u6cx2Lvx7eI+2xXPvNNYFD+oUHC3+4c7u6cx2LuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4432216 -0.02527898 0.57948035]\n [ 0.4432216 -0.02527898 0.57948035]\n [ 0.4432216 -0.02527898 0.57948035]\n [ 0.4432216 -0.02527898 0.57948035]]",
60
+ "desired_goal": "[[-0.9162824 -1.2237501 1.5133697 ]\n [ 1.2441013 -1.028384 -0.13734734]\n [ 1.3440242 0.85916203 1.7022201 ]\n [-0.934636 -0.8245133 -0.33573344]]",
61
+ "observation": "[[ 4.4322160e-01 -2.5278976e-02 5.7948035e-01 -1.4323894e-05\n -2.8614986e-03 -6.5977159e-03]\n [ 4.4322160e-01 -2.5278976e-02 5.7948035e-01 -1.4323894e-05\n -2.8614986e-03 -6.5977159e-03]\n [ 4.4322160e-01 -2.5278976e-02 5.7948035e-01 -1.4323894e-05\n -2.8614986e-03 -6.5977159e-03]\n [ 4.4322160e-01 -2.5278976e-02 5.7948035e-01 -1.4323894e-05\n -2.8614986e-03 -6.5977159e-03]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEemCu0gLqrwPne09xRdcveXUGL2aw/c9j7fOPSaxEb4yWIs+9vrwvRr7370FMzc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.00399507 -0.02075733 0.11602222]\n [-0.05373361 -0.03731241 0.12097855]\n [ 0.10093605 -0.14227733 0.27215725]\n [-0.11766617 -0.10936566 0.17890556]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIt+9Rf73iBMCUhpRSlIwBbJRLMowBdJRHQLKWtJlJ6IF1fZQoaAZoCWgPQwjVPEfku7QJwJSGlFKUaBVLMmgWR0Cylo5+DvmYdX2UKGgGaAloD0MITYQNT6/U8b+UhpRSlGgVSzJoFkdAspZvhFVktnV9lChoBmgJaA9DCHsy/+ibtPa/lIaUUpRoFUsyaBZHQLKWT2MKkVN1fZQoaAZoCWgPQwjfcB+5NakBwJSGlFKUaBVLMmgWR0Cyl6dYW+GodX2UKGgGaAloD0MIkdWtnpOe9b+UhpRSlGgVSzJoFkdAspeBWbPQfXV9lChoBmgJaA9DCJlJ1As+LQDAlIaUUpRoFUsyaBZHQLKXYpQDV6N1fZQoaAZoCWgPQwgjaqLPR/kBwJSGlFKUaBVLMmgWR0Cyl0K1kUbldX2UKGgGaAloD0MIasGLvoL0+7+UhpRSlGgVSzJoFkdAspirshPj43V9lChoBmgJaA9DCE6AYfnzjQDAlIaUUpRoFUsyaBZHQLKYhaTwDvF1fZQoaAZoCWgPQwhBKVq5F1gAwJSGlFKUaBVLMmgWR0CymGbSeAd5dX2UKGgGaAloD0MIMunvpfAAAsCUhpRSlGgVSzJoFkdAsphHHNorWnV9lChoBmgJaA9DCIMWEjC6XAHAlIaUUpRoFUsyaBZHQLKZqHktEoh1fZQoaAZoCWgPQwgxQni0cUT9v5SGlFKUaBVLMmgWR0CymYJRoAXEdX2UKGgGaAloD0MIS6yMRj6vAMCUhpRSlGgVSzJoFkdAspljd2xIKHV9lChoBmgJaA9DCLtkHCPZo/S/lIaUUpRoFUsyaBZHQLKZQ32VVxV1fZQoaAZoCWgPQwirXn6nySwAwJSGlFKUaBVLMmgWR0CymjWkWRA9dX2UKGgGaAloD0MIO6jEdYzr/L+UhpRSlGgVSzJoFkdAspoPJzT4L3V9lChoBmgJaA9DCC3RWWYRSgfAlIaUUpRoFUsyaBZHQLKZ79sJpnJ1fZQoaAZoCWgPQwjNOuP74lL9v5SGlFKUaBVLMmgWR0Cymc+bd8ArdX2UKGgGaAloD0MIMepae59q87+UhpRSlGgVSzJoFkdAsprDxqfvnnV9lChoBmgJaA9DCIxMwK+RZPa/lIaUUpRoFUsyaBZHQLKanUBXCCV1fZQoaAZoCWgPQwi+bDttjQgHwJSGlFKUaBVLMmgWR0Cymn4EGJN1dX2UKGgGaAloD0MIqS7gZYatA8CUhpRSlGgVSzJoFkdAsppdfw7T2HV9lChoBmgJaA9DCNZW7C+7J+G/lIaUUpRoFUsyaBZHQLKbUcKgIyF1fZQoaAZoCWgPQwh6ceKrHWUCwJSGlFKUaBVLMmgWR0CymytAX2ugdX2UKGgGaAloD0MI8yA9RQ4R97+UhpRSlGgVSzJoFkdAspsL8+A3DXV9lChoBmgJaA9DCPDgJw6gX/q/lIaUUpRoFUsyaBZHQLKa64ubqhV1fZQoaAZoCWgPQwjGF+3xQvr4v5SGlFKUaBVLMmgWR0Cym99/OMVDdX2UKGgGaAloD0MIZw5JLZSsB8CUhpRSlGgVSzJoFkdAspu5Zs9B8nV9lChoBmgJaA9DCDwx68VQzgDAlIaUUpRoFUsyaBZHQLKbmndO6/Z1fZQoaAZoCWgPQwh9emzLgHP0v5SGlFKUaBVLMmgWR0Cym3olt0mudX2UKGgGaAloD0MI6BN5knStAcCUhpRSlGgVSzJoFkdAspxoDYAbQ3V9lChoBmgJaA9DCESGVbyRWQLAlIaUUpRoFUsyaBZHQLKcQWVNYbN1fZQoaAZoCWgPQwin7PSDukgAwJSGlFKUaBVLMmgWR0CynCIY3vQXdX2UKGgGaAloD0MIG0tYG2PnAcCUhpRSlGgVSzJoFkdAspwBoIv8InV9lChoBmgJaA9DCN6OcFrwIgDAlIaUUpRoFUsyaBZHQLKc9JvYODt1fZQoaAZoCWgPQwiPbRlwllIDwJSGlFKUaBVLMmgWR0CynM4LG7z1dX2UKGgGaAloD0MIE2ba/pVV+L+UhpRSlGgVSzJoFkdAspyu0ngHeXV9lChoBmgJaA9DCGxaKQRySfy/lIaUUpRoFUsyaBZHQLKcjmYSg5B1fZQoaAZoCWgPQwiALa9cb9v0v5SGlFKUaBVLMmgWR0CynYVGCqZMdX2UKGgGaAloD0MIYygn2lVI37+UhpRSlGgVSzJoFkdAsp1eyKNyYHV9lChoBmgJaA9DCI6vPbMkwALAlIaUUpRoFUsyaBZHQLKdP4REnb91fZQoaAZoCWgPQwh4l4v4TowHwJSGlFKUaBVLMmgWR0CynR8YZVGTdX2UKGgGaAloD0MI1Xd+UYJ+87+UhpRSlGgVSzJoFkdAsp4V5IH1OHV9lChoBmgJaA9DCFPMQdDR6v+/lIaUUpRoFUsyaBZHQLKd7z1bqyJ1fZQoaAZoCWgPQwjt0/GYgQr2v5SGlFKUaBVLMmgWR0Cync/v8ZUDdX2UKGgGaAloD0MIYK3aNSHt/b+UhpRSlGgVSzJoFkdAsp2vhegL7XV9lChoBmgJaA9DCMO7XMR3YgTAlIaUUpRoFUsyaBZHQLKe14+r2g51fZQoaAZoCWgPQwg5J/bQPtbyv5SGlFKUaBVLMmgWR0CynrF09yLidX2UKGgGaAloD0MI3SObq+a5+L+UhpRSlGgVSzJoFkdAsp6So1k1/HV9lChoBmgJaA9DCOI5W0Bo/fu/lIaUUpRoFUsyaBZHQLKecqdpZfV1fZQoaAZoCWgPQwj6fmq8dDMAwJSGlFKUaBVLMmgWR0Cyn8BO+IuXdX2UKGgGaAloD0MIINCZtKnaAsCUhpRSlGgVSzJoFkdAsp+aQdS2pnV9lChoBmgJaA9DCE9AE2HD0/+/lIaUUpRoFUsyaBZHQLKfe1ZDArR1fZQoaAZoCWgPQwi9cVKY91gBwJSGlFKUaBVLMmgWR0Cyn1s+eOGTdX2UKGgGaAloD0MI7lwY6UXt/7+UhpRSlGgVSzJoFkdAsqCysFMZg3V9lChoBmgJaA9DCMZsyaoI9/m/lIaUUpRoFUsyaBZHQLKgjLq2SdR1fZQoaAZoCWgPQwjxnC0gtJ70v5SGlFKUaBVLMmgWR0CyoG3FDOTrdX2UKGgGaAloD0MIlsyxvKse87+UhpRSlGgVSzJoFkdAsqBN5NXYDnV9lChoBmgJaA9DCM45eCY0CQDAlIaUUpRoFUsyaBZHQLKhu8x9G7V1fZQoaAZoCWgPQwjD8BExJZLpv5SGlFKUaBVLMmgWR0CyoZXHim2tdX2UKGgGaAloD0MIFxIwurw5/r+UhpRSlGgVSzJoFkdAsqF3AFgUlHV9lChoBmgJaA9DCJgz2xX6YPC/lIaUUpRoFUsyaBZHQLKhV0ZFXq91fZQoaAZoCWgPQwiz0w/qIgX8v5SGlFKUaBVLMmgWR0CyortOZb6hdX2UKGgGaAloD0MIQgjIl1AB+b+UhpRSlGgVSzJoFkdAsqKVaiblR3V9lChoBmgJaA9DCIVcqWdByALAlIaUUpRoFUsyaBZHQLKidmpVCHB1fZQoaAZoCWgPQwgYB5eOOc//v5SGlFKUaBVLMmgWR0CyolZwn6VMdX2UKGgGaAloD0MIcr9DUaAP9b+UhpRSlGgVSzJoFkdAsqOw1sLv1HV9lChoBmgJaA9DCGgHXFfMCPW/lIaUUpRoFUsyaBZHQLKjilWwNb11fZQoaAZoCWgPQwiRKLSs+4cBwJSGlFKUaBVLMmgWR0Cyo2r8R+SbdX2UKGgGaAloD0MIkfP+P06Y8b+UhpRSlGgVSzJoFkdAsqNKpfhMrXV9lChoBmgJaA9DCN/+XDRkfPi/lIaUUpRoFUsyaBZHQLKkkW+GoJl1fZQoaAZoCWgPQwgLmwEuyJbyv5SGlFKUaBVLMmgWR0CypGtQoCuEdX2UKGgGaAloD0MItHVwsDdxAsCUhpRSlGgVSzJoFkdAsqRNlGwzL3V9lChoBmgJaA9DCILF4cyv5v+/lIaUUpRoFUsyaBZHQLKkLalUIcB1fZQoaAZoCWgPQwh9lufB3Zn7v5SGlFKUaBVLMmgWR0CypYPTw2ETdX2UKGgGaAloD0MIqkTZW8oZA8CUhpRSlGgVSzJoFkdAsqVdk/bCanV9lChoBmgJaA9DCAovwakPBADAlIaUUpRoFUsyaBZHQLKlPpsGgSR1fZQoaAZoCWgPQwjWj03yI74CwJSGlFKUaBVLMmgWR0CypR6PCEYgdX2UKGgGaAloD0MIEhH+RdDYBcCUhpRSlGgVSzJoFkdAsqZuaYu01XV9lChoBmgJaA9DCBXEQNe+IAXAlIaUUpRoFUsyaBZHQLKmSG47Rv51fZQoaAZoCWgPQwim8QuvJPn7v5SGlFKUaBVLMmgWR0Cypimv4dp7dX2UKGgGaAloD0MIKjv9oC5S/7+UhpRSlGgVSzJoFkdAsqYJ4Uvf0nV9lChoBmgJaA9DCObKoNrghP2/lIaUUpRoFUsyaBZHQLKnX2vStvJ1fZQoaAZoCWgPQwhm9+RhoRb8v5SGlFKUaBVLMmgWR0Cypzl41P30dX2UKGgGaAloD0MIiuPAq+UO+7+UhpRSlGgVSzJoFkdAsqca8tf5UXV9lChoBmgJaA9DCFD8GHPXkvi/lIaUUpRoFUsyaBZHQLKm+zCk43p1fZQoaAZoCWgPQwhzofKv5dX9v5SGlFKUaBVLMmgWR0CyqFuSr5qNdX2UKGgGaAloD0MIHGDmO/jJ/7+UhpRSlGgVSzJoFkdAsqg1hG6PKnV9lChoBmgJaA9DCIFDqFKzJwfAlIaUUpRoFUsyaBZHQLKoFrKNhmZ1fZQoaAZoCWgPQwgOMPMd/IT/v5SGlFKUaBVLMmgWR0Cyp/agh8pkdX2UKGgGaAloD0MIjj17LlNT+7+UhpRSlGgVSzJoFkdAsqlaDDjzZ3V9lChoBmgJaA9DCLiSHRuB+P+/lIaUUpRoFUsyaBZHQLKpM3kxREZ1fZQoaAZoCWgPQwgtJjYf1wYAwJSGlFKUaBVLMmgWR0CyqRRJmNBGdX2UKGgGaAloD0MIEDy+vWvQ/r+UhpRSlGgVSzJoFkdAsqjz5HmRvHV9lChoBmgJaA9DCIUks3qHG/+/lIaUUpRoFUsyaBZHQLKp4SmqHXV1fZQoaAZoCWgPQwjN6EfDKbP8v5SGlFKUaBVLMmgWR0CyqbqcZtN0dX2UKGgGaAloD0MInn3lQXoK+r+UhpRSlGgVSzJoFkdAsqmbNr0rb3V9lChoBmgJaA9DCL4uw3+6wfy/lIaUUpRoFUsyaBZHQLKperxiG351ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 75000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62f5d1f82789f934a5636fa2bd6707ed4e281f64e06818da22d2bd8dcff6b251
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a566b765a95f256c9a9b10b9e751fce4edc7ce1a56d768f5943c42fe4cb2ccfd
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5e1b0125e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5e1b0135c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680377640767632649, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8e3iPtsVz7zTWBQ/8e3iPtsVz7zTWBQ/8e3iPtsVz7zTWBQ/8e3iPtsVz7zTWBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfJFqv9ijnL8ZtsE/tj6fPxaig7/IpAy+/AisPwvyWz9Z4tk/TkRvv04TU79B5au+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADx7eI+2xXPvNNYFD+oUHC3+4c7u6cx2Lvx7eI+2xXPvNNYFD+oUHC3+4c7u6cx2Lvx7eI+2xXPvNNYFD+oUHC3+4c7u6cx2Lvx7eI+2xXPvNNYFD+oUHC3+4c7u6cx2LuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4432216 -0.02527898 0.57948035]\n [ 0.4432216 -0.02527898 0.57948035]\n [ 0.4432216 -0.02527898 0.57948035]\n [ 0.4432216 -0.02527898 0.57948035]]", "desired_goal": "[[-0.9162824 -1.2237501 1.5133697 ]\n [ 1.2441013 -1.028384 -0.13734734]\n [ 1.3440242 0.85916203 1.7022201 ]\n [-0.934636 -0.8245133 -0.33573344]]", "observation": "[[ 4.4322160e-01 -2.5278976e-02 5.7948035e-01 -1.4323894e-05\n -2.8614986e-03 -6.5977159e-03]\n [ 4.4322160e-01 -2.5278976e-02 5.7948035e-01 -1.4323894e-05\n -2.8614986e-03 -6.5977159e-03]\n [ 4.4322160e-01 -2.5278976e-02 5.7948035e-01 -1.4323894e-05\n -2.8614986e-03 -6.5977159e-03]\n [ 4.4322160e-01 -2.5278976e-02 5.7948035e-01 -1.4323894e-05\n -2.8614986e-03 -6.5977159e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEemCu0gLqrwPne09xRdcveXUGL2aw/c9j7fOPSaxEb4yWIs+9vrwvRr7370FMzc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00399507 -0.02075733 0.11602222]\n [-0.05373361 -0.03731241 0.12097855]\n [ 0.10093605 -0.14227733 0.27215725]\n [-0.11766617 -0.10936566 0.17890556]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIt+9Rf73iBMCUhpRSlIwBbJRLMowBdJRHQLKWtJlJ6IF1fZQoaAZoCWgPQwjVPEfku7QJwJSGlFKUaBVLMmgWR0Cylo5+DvmYdX2UKGgGaAloD0MITYQNT6/U8b+UhpRSlGgVSzJoFkdAspZvhFVktnV9lChoBmgJaA9DCHsy/+ibtPa/lIaUUpRoFUsyaBZHQLKWT2MKkVN1fZQoaAZoCWgPQwjfcB+5NakBwJSGlFKUaBVLMmgWR0Cyl6dYW+GodX2UKGgGaAloD0MIkdWtnpOe9b+UhpRSlGgVSzJoFkdAspeBWbPQfXV9lChoBmgJaA9DCJlJ1As+LQDAlIaUUpRoFUsyaBZHQLKXYpQDV6N1fZQoaAZoCWgPQwgjaqLPR/kBwJSGlFKUaBVLMmgWR0Cyl0K1kUbldX2UKGgGaAloD0MIasGLvoL0+7+UhpRSlGgVSzJoFkdAspirshPj43V9lChoBmgJaA9DCE6AYfnzjQDAlIaUUpRoFUsyaBZHQLKYhaTwDvF1fZQoaAZoCWgPQwhBKVq5F1gAwJSGlFKUaBVLMmgWR0CymGbSeAd5dX2UKGgGaAloD0MIMunvpfAAAsCUhpRSlGgVSzJoFkdAsphHHNorWnV9lChoBmgJaA9DCIMWEjC6XAHAlIaUUpRoFUsyaBZHQLKZqHktEoh1fZQoaAZoCWgPQwgxQni0cUT9v5SGlFKUaBVLMmgWR0CymYJRoAXEdX2UKGgGaAloD0MIS6yMRj6vAMCUhpRSlGgVSzJoFkdAspljd2xIKHV9lChoBmgJaA9DCLtkHCPZo/S/lIaUUpRoFUsyaBZHQLKZQ32VVxV1fZQoaAZoCWgPQwirXn6nySwAwJSGlFKUaBVLMmgWR0CymjWkWRA9dX2UKGgGaAloD0MIO6jEdYzr/L+UhpRSlGgVSzJoFkdAspoPJzT4L3V9lChoBmgJaA9DCC3RWWYRSgfAlIaUUpRoFUsyaBZHQLKZ79sJpnJ1fZQoaAZoCWgPQwjNOuP74lL9v5SGlFKUaBVLMmgWR0Cymc+bd8ArdX2UKGgGaAloD0MIMepae59q87+UhpRSlGgVSzJoFkdAsprDxqfvnnV9lChoBmgJaA9DCIxMwK+RZPa/lIaUUpRoFUsyaBZHQLKanUBXCCV1fZQoaAZoCWgPQwi+bDttjQgHwJSGlFKUaBVLMmgWR0Cymn4EGJN1dX2UKGgGaAloD0MIqS7gZYatA8CUhpRSlGgVSzJoFkdAsppdfw7T2HV9lChoBmgJaA9DCNZW7C+7J+G/lIaUUpRoFUsyaBZHQLKbUcKgIyF1fZQoaAZoCWgPQwh6ceKrHWUCwJSGlFKUaBVLMmgWR0CymytAX2ugdX2UKGgGaAloD0MI8yA9RQ4R97+UhpRSlGgVSzJoFkdAspsL8+A3DXV9lChoBmgJaA9DCPDgJw6gX/q/lIaUUpRoFUsyaBZHQLKa64ubqhV1fZQoaAZoCWgPQwjGF+3xQvr4v5SGlFKUaBVLMmgWR0Cym99/OMVDdX2UKGgGaAloD0MIZw5JLZSsB8CUhpRSlGgVSzJoFkdAspu5Zs9B8nV9lChoBmgJaA9DCDwx68VQzgDAlIaUUpRoFUsyaBZHQLKbmndO6/Z1fZQoaAZoCWgPQwh9emzLgHP0v5SGlFKUaBVLMmgWR0Cym3olt0mudX2UKGgGaAloD0MI6BN5knStAcCUhpRSlGgVSzJoFkdAspxoDYAbQ3V9lChoBmgJaA9DCESGVbyRWQLAlIaUUpRoFUsyaBZHQLKcQWVNYbN1fZQoaAZoCWgPQwin7PSDukgAwJSGlFKUaBVLMmgWR0CynCIY3vQXdX2UKGgGaAloD0MIG0tYG2PnAcCUhpRSlGgVSzJoFkdAspwBoIv8InV9lChoBmgJaA9DCN6OcFrwIgDAlIaUUpRoFUsyaBZHQLKc9JvYODt1fZQoaAZoCWgPQwiPbRlwllIDwJSGlFKUaBVLMmgWR0CynM4LG7z1dX2UKGgGaAloD0MIE2ba/pVV+L+UhpRSlGgVSzJoFkdAspyu0ngHeXV9lChoBmgJaA9DCGxaKQRySfy/lIaUUpRoFUsyaBZHQLKcjmYSg5B1fZQoaAZoCWgPQwiALa9cb9v0v5SGlFKUaBVLMmgWR0CynYVGCqZMdX2UKGgGaAloD0MIYygn2lVI37+UhpRSlGgVSzJoFkdAsp1eyKNyYHV9lChoBmgJaA9DCI6vPbMkwALAlIaUUpRoFUsyaBZHQLKdP4REnb91fZQoaAZoCWgPQwh4l4v4TowHwJSGlFKUaBVLMmgWR0CynR8YZVGTdX2UKGgGaAloD0MI1Xd+UYJ+87+UhpRSlGgVSzJoFkdAsp4V5IH1OHV9lChoBmgJaA9DCFPMQdDR6v+/lIaUUpRoFUsyaBZHQLKd7z1bqyJ1fZQoaAZoCWgPQwjt0/GYgQr2v5SGlFKUaBVLMmgWR0Cync/v8ZUDdX2UKGgGaAloD0MIYK3aNSHt/b+UhpRSlGgVSzJoFkdAsp2vhegL7XV9lChoBmgJaA9DCMO7XMR3YgTAlIaUUpRoFUsyaBZHQLKe14+r2g51fZQoaAZoCWgPQwg5J/bQPtbyv5SGlFKUaBVLMmgWR0CynrF09yLidX2UKGgGaAloD0MI3SObq+a5+L+UhpRSlGgVSzJoFkdAsp6So1k1/HV9lChoBmgJaA9DCOI5W0Bo/fu/lIaUUpRoFUsyaBZHQLKecqdpZfV1fZQoaAZoCWgPQwj6fmq8dDMAwJSGlFKUaBVLMmgWR0Cyn8BO+IuXdX2UKGgGaAloD0MIINCZtKnaAsCUhpRSlGgVSzJoFkdAsp+aQdS2pnV9lChoBmgJaA9DCE9AE2HD0/+/lIaUUpRoFUsyaBZHQLKfe1ZDArR1fZQoaAZoCWgPQwi9cVKY91gBwJSGlFKUaBVLMmgWR0Cyn1s+eOGTdX2UKGgGaAloD0MI7lwY6UXt/7+UhpRSlGgVSzJoFkdAsqCysFMZg3V9lChoBmgJaA9DCMZsyaoI9/m/lIaUUpRoFUsyaBZHQLKgjLq2SdR1fZQoaAZoCWgPQwjxnC0gtJ70v5SGlFKUaBVLMmgWR0CyoG3FDOTrdX2UKGgGaAloD0MIlsyxvKse87+UhpRSlGgVSzJoFkdAsqBN5NXYDnV9lChoBmgJaA9DCM45eCY0CQDAlIaUUpRoFUsyaBZHQLKhu8x9G7V1fZQoaAZoCWgPQwjD8BExJZLpv5SGlFKUaBVLMmgWR0CyoZXHim2tdX2UKGgGaAloD0MIFxIwurw5/r+UhpRSlGgVSzJoFkdAsqF3AFgUlHV9lChoBmgJaA9DCJgz2xX6YPC/lIaUUpRoFUsyaBZHQLKhV0ZFXq91fZQoaAZoCWgPQwiz0w/qIgX8v5SGlFKUaBVLMmgWR0CyortOZb6hdX2UKGgGaAloD0MIQgjIl1AB+b+UhpRSlGgVSzJoFkdAsqKVaiblR3V9lChoBmgJaA9DCIVcqWdByALAlIaUUpRoFUsyaBZHQLKidmpVCHB1fZQoaAZoCWgPQwgYB5eOOc//v5SGlFKUaBVLMmgWR0CyolZwn6VMdX2UKGgGaAloD0MIcr9DUaAP9b+UhpRSlGgVSzJoFkdAsqOw1sLv1HV9lChoBmgJaA9DCGgHXFfMCPW/lIaUUpRoFUsyaBZHQLKjilWwNb11fZQoaAZoCWgPQwiRKLSs+4cBwJSGlFKUaBVLMmgWR0Cyo2r8R+SbdX2UKGgGaAloD0MIkfP+P06Y8b+UhpRSlGgVSzJoFkdAsqNKpfhMrXV9lChoBmgJaA9DCN/+XDRkfPi/lIaUUpRoFUsyaBZHQLKkkW+GoJl1fZQoaAZoCWgPQwgLmwEuyJbyv5SGlFKUaBVLMmgWR0CypGtQoCuEdX2UKGgGaAloD0MItHVwsDdxAsCUhpRSlGgVSzJoFkdAsqRNlGwzL3V9lChoBmgJaA9DCILF4cyv5v+/lIaUUpRoFUsyaBZHQLKkLalUIcB1fZQoaAZoCWgPQwh9lufB3Zn7v5SGlFKUaBVLMmgWR0CypYPTw2ETdX2UKGgGaAloD0MIqkTZW8oZA8CUhpRSlGgVSzJoFkdAsqVdk/bCanV9lChoBmgJaA9DCAovwakPBADAlIaUUpRoFUsyaBZHQLKlPpsGgSR1fZQoaAZoCWgPQwjWj03yI74CwJSGlFKUaBVLMmgWR0CypR6PCEYgdX2UKGgGaAloD0MIEhH+RdDYBcCUhpRSlGgVSzJoFkdAsqZuaYu01XV9lChoBmgJaA9DCBXEQNe+IAXAlIaUUpRoFUsyaBZHQLKmSG47Rv51fZQoaAZoCWgPQwim8QuvJPn7v5SGlFKUaBVLMmgWR0Cypimv4dp7dX2UKGgGaAloD0MIKjv9oC5S/7+UhpRSlGgVSzJoFkdAsqYJ4Uvf0nV9lChoBmgJaA9DCObKoNrghP2/lIaUUpRoFUsyaBZHQLKnX2vStvJ1fZQoaAZoCWgPQwhm9+RhoRb8v5SGlFKUaBVLMmgWR0Cypzl41P30dX2UKGgGaAloD0MIiuPAq+UO+7+UhpRSlGgVSzJoFkdAsqca8tf5UXV9lChoBmgJaA9DCFD8GHPXkvi/lIaUUpRoFUsyaBZHQLKm+zCk43p1fZQoaAZoCWgPQwhzofKv5dX9v5SGlFKUaBVLMmgWR0CyqFuSr5qNdX2UKGgGaAloD0MIHGDmO/jJ/7+UhpRSlGgVSzJoFkdAsqg1hG6PKnV9lChoBmgJaA9DCIFDqFKzJwfAlIaUUpRoFUsyaBZHQLKoFrKNhmZ1fZQoaAZoCWgPQwgOMPMd/IT/v5SGlFKUaBVLMmgWR0Cyp/agh8pkdX2UKGgGaAloD0MIjj17LlNT+7+UhpRSlGgVSzJoFkdAsqlaDDjzZ3V9lChoBmgJaA9DCLiSHRuB+P+/lIaUUpRoFUsyaBZHQLKpM3kxREZ1fZQoaAZoCWgPQwgtJjYf1wYAwJSGlFKUaBVLMmgWR0CyqRRJmNBGdX2UKGgGaAloD0MIEDy+vWvQ/r+UhpRSlGgVSzJoFkdAsqjz5HmRvHV9lChoBmgJaA9DCIUks3qHG/+/lIaUUpRoFUsyaBZHQLKp4SmqHXV1fZQoaAZoCWgPQwjN6EfDKbP8v5SGlFKUaBVLMmgWR0CyqbqcZtN0dX2UKGgGaAloD0MInn3lQXoK+r+UhpRSlGgVSzJoFkdAsqmbNr0rb3V9lChoBmgJaA9DCL4uw3+6wfy/lIaUUpRoFUsyaBZHQLKperxiG351ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (684 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.6821296639740466, "std_reward": 0.34278920179834504, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T20:53:42.419054"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8192e3026a702827cf91dc5ad3fd62021c1e092bf561d83099761d7b7fc09ee
3
+ size 3056