|
|
|
|
|
|
|
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
|
|
import fairseq
|
|
import soundfile as sf
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from feature_utils import get_path_iterator, dump_feature
|
|
|
|
|
|
logging.basicConfig(
|
|
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
|
datefmt="%Y-%m-%d %H:%M:%S",
|
|
level=os.environ.get("LOGLEVEL", "INFO").upper(),
|
|
stream=sys.stdout,
|
|
)
|
|
logger = logging.getLogger("dump_w2v2_feature")
|
|
|
|
|
|
class Wav2Vec2FeatureReader(object):
|
|
def __init__(self, ckpt_path, layer, max_chunk=1600000):
|
|
(
|
|
model,
|
|
cfg,
|
|
task,
|
|
) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
|
|
self.model = model[0].eval().cuda()
|
|
self.task = task
|
|
self.layer = layer
|
|
self.max_chunk = max_chunk
|
|
logger.info(f"TASK CONFIG:\n{self.task.cfg}")
|
|
logger.info(f" max_chunk = {self.max_chunk}")
|
|
logger.info(f" model:\n{self.model}")
|
|
|
|
def read_audio(self, path, ref_len=None):
|
|
wav, sr = sf.read(path)
|
|
assert sr == self.task.cfg.sample_rate, sr
|
|
if wav.ndim == 2:
|
|
wav = wav.mean(-1)
|
|
assert wav.ndim == 1, wav.ndim
|
|
if ref_len is not None and abs(ref_len - len(wav)) > 160:
|
|
logging.warning(f"ref {ref_len} != read {len(wav)} ({path})")
|
|
return wav
|
|
|
|
def get_feats(self, path, ref_len=None):
|
|
x = self.read_audio(path, ref_len)
|
|
with torch.no_grad():
|
|
x = torch.from_numpy(x).float().cuda()
|
|
if self.task.cfg.normalize:
|
|
x = F.layer_norm(x, x.shape)
|
|
x = x.view(1, -1)
|
|
|
|
feat = []
|
|
for start in range(0, x.size(1), self.max_chunk):
|
|
x_chunk = x[:, start: start + self.max_chunk]
|
|
res = self.model.extract_features(
|
|
source=x_chunk,
|
|
padding_mask=None,
|
|
mask=False,
|
|
)
|
|
|
|
feat_chunk = res[0]
|
|
feat.append(feat_chunk)
|
|
return torch.cat(feat, 1).squeeze(0)
|
|
|
|
|
|
def main(tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk):
|
|
reader = Wav2Vec2FeatureReader(ckpt_path, layer, max_chunk)
|
|
generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank)
|
|
dump_feature(reader, generator, num, split, nshard, rank, feat_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("tsv_dir")
|
|
parser.add_argument("split")
|
|
parser.add_argument("ckpt_path")
|
|
parser.add_argument("layer", type=int)
|
|
parser.add_argument("nshard", type=int)
|
|
parser.add_argument("rank", type=int)
|
|
parser.add_argument("feat_dir")
|
|
parser.add_argument("--max_chunk", type=int, default=1600000)
|
|
args = parser.parse_args()
|
|
logger.info(args)
|
|
|
|
main(**vars(args))
|
|
|