Shenyancheng commited on
Commit
4d53f63
1 Parent(s): 8c71b33

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -22,16 +22,16 @@ model-index:
22
  metrics:
23
  - name: Precision
24
  type: precision
25
- value: 0.9262785034314811
26
  - name: Recall
27
  type: recall
28
- value: 0.9361226087929299
29
  - name: F1
30
  type: f1
31
- value: 0.9311745395871586
32
  - name: Accuracy
33
  type: accuracy
34
- value: 0.9836529143565221
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.0625
45
- - Precision: 0.9263
46
- - Recall: 0.9361
47
- - F1: 0.9312
48
- - Accuracy: 0.9837
49
 
50
  ## Model description
51
 
@@ -76,14 +76,14 @@ The following hyperparameters were used during training:
76
 
77
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
- | 0.2383 | 1.0 | 878 | 0.0718 | 0.9098 | 0.9205 | 0.9151 | 0.9806 |
80
- | 0.0524 | 2.0 | 1756 | 0.0631 | 0.9197 | 0.9318 | 0.9257 | 0.9828 |
81
- | 0.0318 | 3.0 | 2634 | 0.0625 | 0.9263 | 0.9361 | 0.9312 | 0.9837 |
82
 
83
 
84
  ### Framework versions
85
 
86
- - Transformers 4.12.5
87
  - Pytorch 1.10.0+cu111
88
- - Datasets 1.16.1
89
  - Tokenizers 0.10.3
 
22
  metrics:
23
  - name: Precision
24
  type: precision
25
+ value: 0.9266592920353982
26
  - name: Recall
27
  type: recall
28
+ value: 0.9371294328224634
29
  - name: F1
30
  type: f1
31
+ value: 0.9318649535569274
32
  - name: Accuracy
33
  type: accuracy
34
+ value: 0.9838117781625813
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.0620
45
+ - Precision: 0.9267
46
+ - Recall: 0.9371
47
+ - F1: 0.9319
48
+ - Accuracy: 0.9838
49
 
50
  ## Model description
51
 
 
76
 
77
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | 0.2462 | 1.0 | 878 | 0.0714 | 0.9052 | 0.9223 | 0.9137 | 0.9803 |
80
+ | 0.0535 | 2.0 | 1756 | 0.0615 | 0.9188 | 0.9331 | 0.9259 | 0.9827 |
81
+ | 0.0315 | 3.0 | 2634 | 0.0620 | 0.9267 | 0.9371 | 0.9319 | 0.9838 |
82
 
83
 
84
  ### Framework versions
85
 
86
+ - Transformers 4.15.0
87
  - Pytorch 1.10.0+cu111
88
+ - Datasets 1.17.0
89
  - Tokenizers 0.10.3