SheldonSides commited on
Commit
5acedd8
1 Parent(s): 6aca735

Fine-tuning Complete

Browse files
Files changed (2) hide show
  1. README.md +10 -11
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -23,10 +23,10 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.936
27
  - name: F1
28
  type: f1
29
- value: 0.9362275859495188
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -36,9 +36,9 @@ should probably proofread and complete it, then remove this comment. -->
36
 
37
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 0.1535
40
- - Accuracy: 0.936
41
- - F1: 0.9362
42
 
43
  ## Model description
44
 
@@ -58,20 +58,19 @@ More information needed
58
 
59
  The following hyperparameters were used during training:
60
  - learning_rate: 2e-05
61
- - train_batch_size: 48
62
- - eval_batch_size: 48
63
  - seed: 42
64
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
  - lr_scheduler_type: linear
66
- - num_epochs: 3
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
- | 0.3053 | 1.0 | 334 | 0.2418 | 0.924 | 0.9238 |
73
- | 0.1823 | 2.0 | 668 | 0.1734 | 0.934 | 0.9347 |
74
- | 0.1226 | 3.0 | 1002 | 0.1535 | 0.936 | 0.9362 |
75
 
76
 
77
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.926
27
  - name: F1
28
  type: f1
29
+ value: 0.9260875538517123
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
36
 
37
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
38
  It achieves the following results on the evaluation set:
39
+ - Loss: 0.2045
40
+ - Accuracy: 0.926
41
+ - F1: 0.9261
42
 
43
  ## Model description
44
 
 
58
 
59
  The following hyperparameters were used during training:
60
  - learning_rate: 2e-05
61
+ - train_batch_size: 56
62
+ - eval_batch_size: 56
63
  - seed: 42
64
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
  - lr_scheduler_type: linear
66
+ - num_epochs: 2
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
+ | 0.4094 | 1.0 | 286 | 0.2890 | 0.9125 | 0.9121 |
73
+ | 0.2244 | 2.0 | 572 | 0.2045 | 0.926 | 0.9261 |
 
74
 
75
 
76
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:83e34c607cf4fc294f06b718beb3dae3375d313673d19adc1211b2ee61634049
3
  size 267867821
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd4749beb0bf5ef6c1ec7746ed3ab5db8d90ff1a0ba40e8f884470878adfb96f
3
  size 267867821