ShaileshAppukuttan commited on
Commit
93e9b25
1 Parent(s): 20488a5

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.34 +/- 25.68
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79226cf37be0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79226cf37c70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79226cf37d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79226cf37d90>", "_build": "<function ActorCriticPolicy._build at 0x79226cf37e20>", "forward": "<function ActorCriticPolicy.forward at 0x79226cf37eb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79226cf37f40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792208cf0040>", "_predict": "<function ActorCriticPolicy._predict at 0x792208cf00d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792208cf0160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792208cf01f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x792208cf0280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792208cec240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690999078986428947, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM7m71pEbo+CDYdPiQOc77ss009bpXlvQAAAAAAAAAAU6q1PvDiPz+8YjG9Ngi/vsyfVj64JFq+AAAAAAAAAAAmlOM9hcuyuS7IKTris8c0w9j0ujlNRrkAAAAAAACAP6OXoT6BLXs//nJ+PtwVtb4xIbE+qNxkvQAAAAAAAAAAACwFvXu6oLpI5Ts71Tghtd84lDljUli6AACAPwAAgD+AxRG9BmhXP3HBPz3w4qe+k10PvcNlCj0AAAAAAAAAAI3sQb7yARc/p2yYPr2Mm776JuG8Bp2EPQAAAAAAAAAAk3+QvgUYhD/u0Fu+/hm6vpsesb41rwk+AAAAAAAAAABa9+W97GHTufjmjzwpQHo85gqpO5vuW70AAIA/AAAAADP+qjwpDDu6HXTWur6Hl7Ukbu+62D/+OQAAgD8AAIA/AE+PvYtqIz8PHhs+esaSvj8evTxiUas9AAAAAAAAAAAackw+y0qdP84xsD7lfeu+GWGEPhJmPj0AAAAAAAAAAM2OVL1ck2C6TxdBtPOZC6+2NpG5st+uMwAAgD8AAIA/MyOCO+pLtT8F880++XB4Pn6Slrs/mrq9AAAAAAAAAAAggjW+o8OHP4gR771m83q+DmmIvuIOwrwAAAAAAAAAAM1aHj0pFCS6btEGNF1A9i+K6zS7Hc6pswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF37a/RE4OMAWyUS/qMAXSUR0CTttQzUI9ldX2UKGgGR0BwUfaAWi1zaAdNJwFoCEdAk7dwFs54nnV9lChoBkdAcS2i+tbLU2gHTRIBaAhHQJO47ps41gp1fZQoaAZHQG6Lol+mWMVoB00jAWgIR0CTuOX0XgtOdX2UKGgGR0Bvd13W4EwGaAdNIwFoCEdAk7krYsd1dXV9lChoBkdAcbC2IwdsBWgHTRwBaAhHQJO5NDE3sHB1fZQoaAZHQHLqQKOT7l9oB00cAWgIR0CTujzollbvdX2UKGgGR0BxrWiSJTESaAdNKgFoCEdAk7ptoN/e+HV9lChoBkdAbDmPMjeKsWgHTS0BaAhHQJO7U0elsP91fZQoaAZHQG9xrux8lX1oB00MAWgIR0CTvdpY9xIbdX2UKGgGR0Bu251eSjgyaAdNHQFoCEdAk74h/ZuhsnV9lChoBkdAbRA10knkUGgHTVMBaAhHQJO+g+6iCat1fZQoaAZHQHHHqTbFjutoB00dAWgIR0CTvrjXWe6JdX2UKGgGR0BvD5NEgGKRaAdNSgFoCEdAk77uBpYcN3V9lChoBkdAcq3vq1PWQWgHTU4BaAhHQJO/ouctoSN1fZQoaAZHQHG5ZtelbeNoB00JAWgIR0CTwINb1RLsdX2UKGgGR0BxGHechC+laAdNKgFoCEdAk8DwuuieunV9lChoBkdAblLJFLFn7GgHTScBaAhHQJPA8eDFqBV1fZQoaAZHQHDxyYLLIPtoB00cAWgIR0CTwoc8DB/JdX2UKGgGR0BwTc66reZYaAdNQQFoCEdAk8PRu0kWynV9lChoBkdAcTsvgWJrL2gHTUMBaAhHQJPEMxi5NGp1fZQoaAZHQGx3+7L+xW1oB01rAWgIR0CTxbyAxzq9dX2UKGgGR0BwGZuhsZYQaAdNSQFoCEdAk8XGWIGhVXV9lChoBkdAcdeDpTuOTGgHTS0BaAhHQJPF9kH2RJV1fZQoaAZHQHNg3dbgTAZoB0vxaAhHQJPGPbYbsGB1fZQoaAZHQHHx1rIo3JhoB01VAWgIR0CTxlaiblRxdX2UKGgGR0Byh+D15B1LaAdNHgFoCEdAk8hvi97F9HV9lChoBkdAb0zfShJyyWgHTTIBaAhHQJPI74agmJF1fZQoaAZHQHGo3MhX8wZoB00RAWgIR0CTyeuTibUgdX2UKGgGR0BtbK0lZ5iWaAdNMwFoCEdAk8oxIe5nUXV9lChoBkdAcWS8n/kvK2gHTWcBaAhHQJPKd3jdYXB1fZQoaAZHQHJsTUI9kjJoB00fAWgIR0CTysn5i3G5dX2UKGgGR0Bu7EGHHmzTaAdNJQFoCEdAk8r9NahYeXV9lChoBkdAb3gjcEeQuGgHTZkBaAhHQJPM0iV0Lc91fZQoaAZHQHEa1/MGHHpoB006AWgIR0CTzU5myxA0dX2UKGgGR0BxZXtOVPepaAdNKQFoCEdAk85uGGmDUXV9lChoBkdAb5LuDSPU8WgHTSABaAhHQJPPrNNahYh1fZQoaAZHQHER2KZUkv9oB00lAWgIR0CTz9JqZc9odX2UKGgGR0Bwx07dSEUTaAdNWQFoCEdAk8/bWI42j3V9lChoBkdAbVk61b7j1mgHTSsBaAhHQJPQQrqdH2B1fZQoaAZHQHDn53xFy7xoB01BAWgIR0CT0TKIi1RcdX2UKGgGR0Bw8ax9oexOaAdNTQFoCEdAk9Guy3Td+HV9lChoBkdAcNMVo6CDmWgHTSgBaAhHQJPSpArxy4p1fZQoaAZHQHKc5gw482doB00MAWgIR0CT01ix3V0+dX2UKGgGR0BvDZ/mT1TSaAdNDAFoCEdAk9P9szl90HV9lChoBkdAbHD1EmY0EWgHTSIBaAhHQJPVCViWmgt1fZQoaAZHQHCiMxoIv8JoB01GAWgIR0CT1TMSK3uvdX2UKGgGR0BwO3V/c32maAdNgQFoCEdAk+n8AWBSUHV9lChoBkdAcEkPwuuie2gHTSkBaAhHQJPrh8IAwPB1fZQoaAZHQHGPL9AHE/BoB009AWgIR0CT68RBNVR2dX2UKGgGR0BxFD/WDpTuaAdNMAFoCEdAk+z1jqfOEHV9lChoBkdAcGwtBv73wmgHTSUBaAhHQJPuFWHUMG51fZQoaAZHQGvd5CngpBpoB00wAWgIR0CT7o49X9zfdX2UKGgGR0Bw7KtaIN3GaAdNPQFoCEdAk+7jf3vhInV9lChoBkdAStmbobGWEGgHS9VoCEdAk+8qmKqGUXV9lChoBkdAbuxfJFLFoGgHTTYBaAhHQJPvQNsnAqN1fZQoaAZHQHA6WOEM9bJoB00OAWgIR0CT73XLNfPYdX2UKGgGR0ByaO0ojOcEaAdNNAFoCEdAk/At4Z/CqXV9lChoBkdAcCoApazNU2gHTQgCaAhHQJPwumFajet1fZQoaAZHQG0Wu32EkB1oB00cAWgIR0CT8NQDFId3dX2UKGgGR0BxuckjX4CZaAdNGQFoCEdAk/LhceKba3V9lChoBkdAbS71U2kzoGgHTUUBaAhHQJPzWCZnctZ1fZQoaAZHQG98dRBNVR1oB00XAWgIR0CT9WsvqTr3dX2UKGgGR0BvQMtNBWxRaAdNcgFoCEdAk/YAs5GSZHV9lChoBkdAcStSuyNXHWgHTVIBaAhHQJP2K9Ba9sd1fZQoaAZHQHDpiLyc0+FoB000AWgIR0CT9sdbgTAWdX2UKGgGR0ByJ1FhG6PKaAdNGwFoCEdAk/b0NKAavXV9lChoBkdAcbjTYukDZGgHTR4BaAhHQJP38SOBDoh1fZQoaAZHQHGqAElme19oB00bAWgIR0CT+I3A2ycDdX2UKGgGR0Byf6akRBeHaAdNLQFoCEdAk/jgP3BYWHV9lChoBkdAbdrI91U2k2gHTSIBaAhHQJP5UcMmWt51fZQoaAZHQHHW++dsi0RoB00tAWgIR0CT+XsIVuaXdX2UKGgGR0BuMX642CNCaAdNSAFoCEdAk/o6ePJaJXV9lChoBkdAcZgPcBU70WgHTSsBaAhHQJP6RsBQvYh1fZQoaAZHQHGcz2WY4Q1oB00rAWgIR0CT+ryM1jy4dX2UKGgGR0BzJhr0rbxmaAdNjQFoCEdAk/5FndweeXV9lChoBkdAcmcL0SRKYmgHS/doCEdAk/9IigTRIHV9lChoBkdAcLFVktmL+GgHTW0BaAhHQJP/zu0CzTp1fZQoaAZHQHJHDABT4tZoB01IAWgIR0CUATPci4axdX2UKGgGR0BxEI46wMYuaAdNNAFoCEdAlAEkdilSCXV9lChoBkdAbtwasIVuaWgHTSIBaAhHQJQBSbobGWF1fZQoaAZHQHHadNrTH81oB009AWgIR0CUAVFPBSDRdX2UKGgGR0BDj8RtgrpaaAdL4WgIR0CUAWovzvqkdX2UKGgGR0By93ifg75maAdNDQFoCEdAlAGNYSxqwnV9lChoBkdAb/Zp+tr9EWgHTR0BaAhHQJQCm+L3sX11fZQoaAZHQHDcDHsC1Z1oB00cAWgIR0CUAt8l5WzXdX2UKGgGR0BwV31f3N9qaAdNFgFoCEdAlANClN1yNnV9lChoBkdAcT3guyu6mWgHTRwBaAhHQJQETHT7VKB1fZQoaAZHQHFRwtJ4B3loB00NAWgIR0CUBFbX6InCdX2UKGgGR0BwCAlY2bXpaAdNLAFoCEdAlAS2T9sJpnV9lChoBkdAbSD/7zkIX2gHTTgCaAhHQJQGw8bJfY11fZQoaAZHQG7KXLvCuU5oB00rAWgIR0CUCH0ngHeKdX2UKGgGR0Bwyidf9gndaAdNIAFoCEdAlAj5RwZOz3V9lChoBkdAbf3kzXSSeWgHTREBaAhHQJQKMIldC3R1fZQoaAZHQHCDzzND+itoB00/AWgIR0CUCrBoEjgRdX2UKGgGR0ByC1CrtE5RaAdNLwFoCEdAlAuK7/XGwXV9lChoBkdAcfh8jzI3i2gHTTYBaAhHQJQLzQOWjXZ1fZQoaAZHQHHHuR1X/5toB005AWgIR0CUC8ZuhsZYdX2UKGgGR0BwnFOrQw9JaAdNPwFoCEdAlAxTHfdhzHV9lChoBkdAbHU/X5FgD2gHTQ4BaAhHQJQN+p++dsl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d32727d2c4f35485fa348e39b1c15729b561f5e32ac655208a064ba9f0c67bb
3
+ size 146750
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79226cf37be0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79226cf37c70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79226cf37d00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79226cf37d90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79226cf37e20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79226cf37eb0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79226cf37f40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792208cf0040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x792208cf00d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792208cf0160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792208cf01f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x792208cf0280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x792208cec240>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690999078986428947,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM7m71pEbo+CDYdPiQOc77ss009bpXlvQAAAAAAAAAAU6q1PvDiPz+8YjG9Ngi/vsyfVj64JFq+AAAAAAAAAAAmlOM9hcuyuS7IKTris8c0w9j0ujlNRrkAAAAAAACAP6OXoT6BLXs//nJ+PtwVtb4xIbE+qNxkvQAAAAAAAAAAACwFvXu6oLpI5Ts71Tghtd84lDljUli6AACAPwAAgD+AxRG9BmhXP3HBPz3w4qe+k10PvcNlCj0AAAAAAAAAAI3sQb7yARc/p2yYPr2Mm776JuG8Bp2EPQAAAAAAAAAAk3+QvgUYhD/u0Fu+/hm6vpsesb41rwk+AAAAAAAAAABa9+W97GHTufjmjzwpQHo85gqpO5vuW70AAIA/AAAAADP+qjwpDDu6HXTWur6Hl7Ukbu+62D/+OQAAgD8AAIA/AE+PvYtqIz8PHhs+esaSvj8evTxiUas9AAAAAAAAAAAackw+y0qdP84xsD7lfeu+GWGEPhJmPj0AAAAAAAAAAM2OVL1ck2C6TxdBtPOZC6+2NpG5st+uMwAAgD8AAIA/MyOCO+pLtT8F880++XB4Pn6Slrs/mrq9AAAAAAAAAAAggjW+o8OHP4gR771m83q+DmmIvuIOwrwAAAAAAAAAAM1aHj0pFCS6btEGNF1A9i+K6zS7Hc6pswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF37a/RE4OMAWyUS/qMAXSUR0CTttQzUI9ldX2UKGgGR0BwUfaAWi1zaAdNJwFoCEdAk7dwFs54nnV9lChoBkdAcS2i+tbLU2gHTRIBaAhHQJO47ps41gp1fZQoaAZHQG6Lol+mWMVoB00jAWgIR0CTuOX0XgtOdX2UKGgGR0Bvd13W4EwGaAdNIwFoCEdAk7krYsd1dXV9lChoBkdAcbC2IwdsBWgHTRwBaAhHQJO5NDE3sHB1fZQoaAZHQHLqQKOT7l9oB00cAWgIR0CTujzollbvdX2UKGgGR0BxrWiSJTESaAdNKgFoCEdAk7ptoN/e+HV9lChoBkdAbDmPMjeKsWgHTS0BaAhHQJO7U0elsP91fZQoaAZHQG9xrux8lX1oB00MAWgIR0CTvdpY9xIbdX2UKGgGR0Bu251eSjgyaAdNHQFoCEdAk74h/ZuhsnV9lChoBkdAbRA10knkUGgHTVMBaAhHQJO+g+6iCat1fZQoaAZHQHHHqTbFjutoB00dAWgIR0CTvrjXWe6JdX2UKGgGR0BvD5NEgGKRaAdNSgFoCEdAk77uBpYcN3V9lChoBkdAcq3vq1PWQWgHTU4BaAhHQJO/ouctoSN1fZQoaAZHQHG5ZtelbeNoB00JAWgIR0CTwINb1RLsdX2UKGgGR0BxGHechC+laAdNKgFoCEdAk8DwuuieunV9lChoBkdAblLJFLFn7GgHTScBaAhHQJPA8eDFqBV1fZQoaAZHQHDxyYLLIPtoB00cAWgIR0CTwoc8DB/JdX2UKGgGR0BwTc66reZYaAdNQQFoCEdAk8PRu0kWynV9lChoBkdAcTsvgWJrL2gHTUMBaAhHQJPEMxi5NGp1fZQoaAZHQGx3+7L+xW1oB01rAWgIR0CTxbyAxzq9dX2UKGgGR0BwGZuhsZYQaAdNSQFoCEdAk8XGWIGhVXV9lChoBkdAcdeDpTuOTGgHTS0BaAhHQJPF9kH2RJV1fZQoaAZHQHNg3dbgTAZoB0vxaAhHQJPGPbYbsGB1fZQoaAZHQHHx1rIo3JhoB01VAWgIR0CTxlaiblRxdX2UKGgGR0Byh+D15B1LaAdNHgFoCEdAk8hvi97F9HV9lChoBkdAb0zfShJyyWgHTTIBaAhHQJPI74agmJF1fZQoaAZHQHGo3MhX8wZoB00RAWgIR0CTyeuTibUgdX2UKGgGR0BtbK0lZ5iWaAdNMwFoCEdAk8oxIe5nUXV9lChoBkdAcWS8n/kvK2gHTWcBaAhHQJPKd3jdYXB1fZQoaAZHQHJsTUI9kjJoB00fAWgIR0CTysn5i3G5dX2UKGgGR0Bu7EGHHmzTaAdNJQFoCEdAk8r9NahYeXV9lChoBkdAb3gjcEeQuGgHTZkBaAhHQJPM0iV0Lc91fZQoaAZHQHEa1/MGHHpoB006AWgIR0CTzU5myxA0dX2UKGgGR0BxZXtOVPepaAdNKQFoCEdAk85uGGmDUXV9lChoBkdAb5LuDSPU8WgHTSABaAhHQJPPrNNahYh1fZQoaAZHQHER2KZUkv9oB00lAWgIR0CTz9JqZc9odX2UKGgGR0Bwx07dSEUTaAdNWQFoCEdAk8/bWI42j3V9lChoBkdAbVk61b7j1mgHTSsBaAhHQJPQQrqdH2B1fZQoaAZHQHDn53xFy7xoB01BAWgIR0CT0TKIi1RcdX2UKGgGR0Bw8ax9oexOaAdNTQFoCEdAk9Guy3Td+HV9lChoBkdAcNMVo6CDmWgHTSgBaAhHQJPSpArxy4p1fZQoaAZHQHKc5gw482doB00MAWgIR0CT01ix3V0+dX2UKGgGR0BvDZ/mT1TSaAdNDAFoCEdAk9P9szl90HV9lChoBkdAbHD1EmY0EWgHTSIBaAhHQJPVCViWmgt1fZQoaAZHQHCiMxoIv8JoB01GAWgIR0CT1TMSK3uvdX2UKGgGR0BwO3V/c32maAdNgQFoCEdAk+n8AWBSUHV9lChoBkdAcEkPwuuie2gHTSkBaAhHQJPrh8IAwPB1fZQoaAZHQHGPL9AHE/BoB009AWgIR0CT68RBNVR2dX2UKGgGR0BxFD/WDpTuaAdNMAFoCEdAk+z1jqfOEHV9lChoBkdAcGwtBv73wmgHTSUBaAhHQJPuFWHUMG51fZQoaAZHQGvd5CngpBpoB00wAWgIR0CT7o49X9zfdX2UKGgGR0Bw7KtaIN3GaAdNPQFoCEdAk+7jf3vhInV9lChoBkdAStmbobGWEGgHS9VoCEdAk+8qmKqGUXV9lChoBkdAbuxfJFLFoGgHTTYBaAhHQJPvQNsnAqN1fZQoaAZHQHA6WOEM9bJoB00OAWgIR0CT73XLNfPYdX2UKGgGR0ByaO0ojOcEaAdNNAFoCEdAk/At4Z/CqXV9lChoBkdAcCoApazNU2gHTQgCaAhHQJPwumFajet1fZQoaAZHQG0Wu32EkB1oB00cAWgIR0CT8NQDFId3dX2UKGgGR0BxuckjX4CZaAdNGQFoCEdAk/LhceKba3V9lChoBkdAbS71U2kzoGgHTUUBaAhHQJPzWCZnctZ1fZQoaAZHQG98dRBNVR1oB00XAWgIR0CT9WsvqTr3dX2UKGgGR0BvQMtNBWxRaAdNcgFoCEdAk/YAs5GSZHV9lChoBkdAcStSuyNXHWgHTVIBaAhHQJP2K9Ba9sd1fZQoaAZHQHDpiLyc0+FoB000AWgIR0CT9sdbgTAWdX2UKGgGR0ByJ1FhG6PKaAdNGwFoCEdAk/b0NKAavXV9lChoBkdAcbjTYukDZGgHTR4BaAhHQJP38SOBDoh1fZQoaAZHQHGqAElme19oB00bAWgIR0CT+I3A2ycDdX2UKGgGR0Byf6akRBeHaAdNLQFoCEdAk/jgP3BYWHV9lChoBkdAbdrI91U2k2gHTSIBaAhHQJP5UcMmWt51fZQoaAZHQHHW++dsi0RoB00tAWgIR0CT+XsIVuaXdX2UKGgGR0BuMX642CNCaAdNSAFoCEdAk/o6ePJaJXV9lChoBkdAcZgPcBU70WgHTSsBaAhHQJP6RsBQvYh1fZQoaAZHQHGcz2WY4Q1oB00rAWgIR0CT+ryM1jy4dX2UKGgGR0BzJhr0rbxmaAdNjQFoCEdAk/5FndweeXV9lChoBkdAcmcL0SRKYmgHS/doCEdAk/9IigTRIHV9lChoBkdAcLFVktmL+GgHTW0BaAhHQJP/zu0CzTp1fZQoaAZHQHJHDABT4tZoB01IAWgIR0CUATPci4axdX2UKGgGR0BxEI46wMYuaAdNNAFoCEdAlAEkdilSCXV9lChoBkdAbtwasIVuaWgHTSIBaAhHQJQBSbobGWF1fZQoaAZHQHHadNrTH81oB009AWgIR0CUAVFPBSDRdX2UKGgGR0BDj8RtgrpaaAdL4WgIR0CUAWovzvqkdX2UKGgGR0By93ifg75maAdNDQFoCEdAlAGNYSxqwnV9lChoBkdAb/Zp+tr9EWgHTR0BaAhHQJQCm+L3sX11fZQoaAZHQHDcDHsC1Z1oB00cAWgIR0CUAt8l5WzXdX2UKGgGR0BwV31f3N9qaAdNFgFoCEdAlANClN1yNnV9lChoBkdAcT3guyu6mWgHTRwBaAhHQJQETHT7VKB1fZQoaAZHQHFRwtJ4B3loB00NAWgIR0CUBFbX6InCdX2UKGgGR0BwCAlY2bXpaAdNLAFoCEdAlAS2T9sJpnV9lChoBkdAbSD/7zkIX2gHTTgCaAhHQJQGw8bJfY11fZQoaAZHQG7KXLvCuU5oB00rAWgIR0CUCH0ngHeKdX2UKGgGR0Bwyidf9gndaAdNIAFoCEdAlAj5RwZOz3V9lChoBkdAbf3kzXSSeWgHTREBaAhHQJQKMIldC3R1fZQoaAZHQHCDzzND+itoB00/AWgIR0CUCrBoEjgRdX2UKGgGR0ByC1CrtE5RaAdNLwFoCEdAlAuK7/XGwXV9lChoBkdAcfh8jzI3i2gHTTYBaAhHQJQLzQOWjXZ1fZQoaAZHQHHHuR1X/5toB005AWgIR0CUC8ZuhsZYdX2UKGgGR0BwnFOrQw9JaAdNPwFoCEdAlAxTHfdhzHV9lChoBkdAbHU/X5FgD2gHTQ4BaAhHQJQN+p++dsl1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55079ab91aa824be6729331c141541549457e7937b14619f2a2da8f99864eb60
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:372d37047938e8fba57bad4f5eac0aec8d590ed8943be5899edd70625cd7d6c5
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (171 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.34061940003824, "std_reward": 25.683417951359697, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-02T18:30:45.468492"}