ShahulRahman commited on
Commit
e8ccf38
·
1 Parent(s): 64df2b4

Uploading unit 1 lunar RL agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2931.65 +/- 839.50
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca540469e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca54046a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca54046b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca54046b90>", "_build": "<function ActorCriticPolicy._build at 0x7fca54046c20>", "forward": "<function ActorCriticPolicy.forward at 0x7fca54046cb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca54046d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca54046dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fca54046e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca54046ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca54046f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca54047010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fca540492c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 32768, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687951104049428911, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqvH75M0Bg/N5GbvtVqb79Vydw9UPTVvQAAAAAAAAAAtpmJPtyt1D7+9wo/qSikvyGHA76N1c09AAAAAAAAAACzHgm9zHm1PzuB+r4hGIK8AxogPZLMrz0AAAAAAAAAAM24TzwSmKI/6osOPWW12b6ztxk7fIY/PAAAAAAAAAAAgBs5PnATQT8iWBQ/VoSBv9PHpr6iunm+AAAAAAAAAAACgwG/DqrLPc5Lbb8xgsq/DsnnPy/tJT8AAAAAAAAAAAOAlj4Zp6o/UiE5P32N7b7qAxC/4vWVvgAAAAAAAAAAwC3SPSjqOT9QOcQ+/9hvv8azy772L9W+AAAAAAAAAAAzu4a7ZZmTP2KZ+r2C2ha/ZfQHPm5TjTwAAAAAAAAAALNKPz7un5k/eOcfP0EeU78I642/8tMOvwAAAAAAAAAA9jfXvngVoj8jLkO/tq4SvxPi1z7G6xs+AAAAAAAAAADjnoM+VeDdP4blSj+N9Is7UZk9v4UDzr4AAAAAAAAAAJp2N70XWaI/TsDZvrymFr/KcqA9GkT2PQAAAAAAAAAAZpEnPq9KrT8DB98+T8ebvsqxhb4DX6W9AAAAAAAAAACtfrM+q5BhPyrggD93si+/wdfTvhCtRr4AAAAAAAAAACK2lr4SJJE/XFwmv75WJ79Ua/c+SE9GPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -3275.8, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFFXomois4mMAWyUS0yMAXSUR0B+I5KEnLJTdX2UKGgGR8BWn8vugHu7aAdLa2gIR0B+JEAn2IwedX2UKGgGR8AxrFW4mTkiaAdLd2gIR0B+JLKHO8kEdX2UKGgGR8BUul1bJOnEaAdLXmgIR0B+JM150KZ2dX2UKGgGR8Bd/xkiD/VBaAdLRWgIR0B+JNiExqO+dX2UKGgGR8A4No3Jgb6yaAdLSGgIR0B+JRggHNX6dX2UKGgGR8BKGG2CuloEaAdLPGgIR0B+Ji+dsi0OdX2UKGgGR8Aw9H6/IsAeaAdLgWgIR0B+Jk9yLhrFdX2UKGgGR8BuS9xffGdaaAdLSmgIR0B+JsOf/WDpdX2UKGgGR8BeMJ4W1twaaAdLVWgIR0B+J6nP3SKFdX2UKGgGR8BVMNKAavRraAdLP2gIR0B+KC3QUpNLdX2UKGgGR8Byqqon8baRaAdLZmgIR0B+KHZWaMJhdX2UKGgGR8BnMN0DEFW5aAdLVmgIR0B+KFt+CsfadX2UKGgGR8BexAzDXOGCaAdLV2gIR0B+KJ1nuiN9dX2UKGgGR8BY9By0a6z3aAdLgmgIR0B+KVDc/MW5dX2UKGgGR8B/0dgVoHs1aAdLcmgIR0B+KS6XjU/fdX2UKGgGR8Brd2ZAprk9aAdLXWgIR0B+KSup0fYBdX2UKGgGR8BgfiOT7l7uaAdLYGgIR0B+KYmtyPuHdX2UKGgGR8BZS4EbHZK4aAdLT2gIR0B+KcgRsdkrdX2UKGgGR8BZliqU/wAmaAdLVmgIR0B+Kg5tFa0QdX2UKGgGR8BiDMOuq3mWaAdLVWgIR0B+KmN1hb4bdX2UKGgGR8BlgV70Fr2yaAdLdWgIR0B+LEolUp/gdX2UKGgGR8B0WTQ5WBBiaAdLZ2gIR0B+LOt4iX6ZdX2UKGgGR8Bm1Sk690zTaAdLT2gIR0B+LOKKpDNRdX2UKGgGR8BbQ7UXpGF0aAdLS2gIR0B+LSdFvybydX2UKGgGR8BlBT5ylvZRaAdLZGgIR0B+LV0yP+4tdX2UKGgGR8BnuBjJ+2E1aAdLP2gIR0B+LZC/oJRgdX2UKGgGR8B1/BHoX9BKaAdLcmgIR0B+LdiNKh+OdX2UKGgGR8BT9FNHpbD/aAdLTGgIR0B+Li75Ec81dX2UKGgGR8BhdSUX531SaAdLTGgIR0B+LohgVoHtdX2UKGgGR8BmrhJul41QaAdLZGgIR0B+Lu2OQyRCdX2UKGgGR8BahKxoqTbGaAdLXWgIR0B+LzUSZjQRdX2UKGgGR8BxoLsiSq2jaAdLamgIR0B+LzBHkLhKdX2UKGgGR8Byx/kzXSSeaAdLZ2gIR0B+L0Wac7QtdX2UKGgGR8Bn2p9E1EVnaAdLW2gIR0B+L67CiyprdX2UKGgGR8BGACR4hUzbaAdLWWgIR0B+MChkAggYdX2UKGgGR8BaadI065oXaAdLQGgIR0B+MNDneSB9dX2UKGgGR8BbTERWcSXdaAdLcWgIR0B+MTgWJrLydX2UKGgGR8BRmOxjawljaAdLT2gIR0B+MeU+s5n2dX2UKGgGR8BgxiqyWzF/aAdLS2gIR0B+Md6ol2NedX2UKGgGR8BdJRUNrj5saAdLXmgIR0B+Mh2St/4JdX2UKGgGR0A87jc2zfJnaAdLWWgIR0B+MuzHCGeudX2UKGgGR8BSDylabF0gaAdLQWgIR0B+MuAjIJZ4dX2UKGgGR8BVAInSfDk3aAdLXmgIR0B+M4H/tICmdX2UKGgGR8BmEYr4FiazaAdLRGgIR0B+M1HavicYdX2UKGgGR8BaAp3Tuv2XaAdLRGgIR0B+M2g7HQyAdX2UKGgGR8Bv+HI6r/83aAdLXGgIR0B+M8ssg+yJdX2UKGgGR8B74q87IT4+aAdLeGgIR0B+ND4CZF5OdX2UKGgGR8BUoDN6gM+eaAdLUGgIR0B+NKFfzBhydX2UKGgGR8BqS0snRb8naAdLaGgIR0B+NOr92ovSdX2UKGgGR8Ba8fUSZjQRaAdLbGgIR0B+NdvUBnzydX2UKGgGR8Bi4rGvOhTPaAdLQmgIR0B+Ng8aGYa6dX2UKGgGR8B6kTICEHt4aAdLWWgIR0B+NtRhttQ9dX2UKGgGR8BQzG1pj+aSaAdLPmgIR0B+NsW8AaNudX2UKGgGR8BjuG0CzTnaaAdLbWgIR0B+Nvi1iONpdX2UKGgGR8BW1uGTLW7OaAdLdGgIR0B+OC19fCyhdX2UKGgGR8Bz2VP2wmmcaAdLV2gIR0B+OHvYvnKXdX2UKGgGR8B1Rn7pFCswaAdLZGgIR0B+OHzWf9P2dX2UKGgGR8Bf4Kl1r6+GaAdLUmgIR0B+OKdrftQbdX2UKGgGR8BkNxtJnQIEaAdLSGgIR0B+OOFHrhR7dX2UKGgGR8BnY1JJ5E+gaAdLcWgIR0B+ORdPci4bdX2UKGgGR8Bh9dPP9kz5aAdLY2gIR0B+Odlar3j/dX2UKGgGR8Bks5l6JIlMaAdLamgIR0B+OpLuhK15dX2UKGgGR8BrNAtSQ5mzaAdLXmgIR0B+Ovj7yhBadX2UKGgGR8BObSLhrFfiaAdLg2gIR0B+O8Yj0L+hdX2UKGgGR8BWc0zO5avBaAdLT2gIR0B+PAYYR/VidX2UKGgGR8BiK4e9zwMIaAdLXmgIR0B+PAJAt4A0dX2UKGgGR8BbrGVeKKpDaAdLPmgIR0B+PItoSL62dX2UKGgGR8BqDO6wt8NQaAdLT2gIR0B+PYJKJ2t/dX2UKGgGR8BCJShrWRRuaAdLiGgIR0B+PaEf1YhddX2UKGgGR8BOZsQd0aIfaAdLRWgIR0B+PZgogFHKdX2UKGgGR8BRFn003wTeaAdLUGgIR0B+PoBMi8nNdX2UKGgGR8BbyuMl1KXfaAdLdGgIR0B+PsA5q/M4dX2UKGgGR8BgAi20AtFsaAdLTGgIR0B+PwhKUVzqdX2UKGgGR8B0H0Y4yXUpaAdLjGgIR0B+P2DaoMrmdX2UKGgGR8Bd3GwiaAnVaAdLimgIR0B+P/tdAxBWdX2UKGgGR8BQxCU5dWyUaAdLPWgIR0B+P+9AX2ugdX2UKGgGR8AzbAnlXA/LaAdLdmgIR0B+QF0cOskqdX2UKGgGR8BtpRybQTmGaAdLTmgIR0B+QEX/HYHxdX2UKGgGR8BQebqyGBWgaAdLQmgIR0B+QIIrvsqsdX2UKGgGR8B1nvag2606aAdLeWgIR0B+QLfNzKcNdX2UKGgGR8Bq0iUgSvkjaAdLXmgIR0B+QOPluFYddX2UKGgGR8BY0k6T4cm0aAdLS2gIR0B+QYNXo1UEdX2UKGgGR8BX4ozabnX/aAdLVWgIR0B+QZ6IFeOXdX2UKGgGR8BVdXtrsSkCaAdLTWgIR0B+Q4hA4XGfdX2UKGgGR8B3vniJfpljaAdLWmgIR0B+RCO938oAdX2UKGgGR8ByouP5pJwsaAdLbGgIR0B+RFpZfUnYdX2UKGgGR8B29he4TbnHaAdLUWgIR0B+RHCSA6MjdX2UKGgGR8BVLJzcRDkVaAdLRWgIR0B+RI2S+xnndX2UKGgGR8Be2lar3j+8aAdLSmgIR0B+RIvEjxCqdX2UKGgGR8BlPGNm16VuaAdLRmgIR0B+RNoUSIxhdX2UKGgGR8Bbl+ieumrKaAdLZWgIR0B+RVcu8K5TdX2UKGgGR8BjJ3EbYK6XaAdLemgIR0B+RU42jwhGdX2UKGgGR8BayEadc0LuaAdLfWgIR0B+RXGXHBDYdX2UKGgGR8Brrr0HyEteaAdLTWgIR0B+RX5AQg9vdX2UKGgGR8Bh9B/iHZbqaAdLTmgIR0B+RbaPCEYgdX2UKGgGR8Bdr6xxDLKWaAdLZWgIR0B+Rjb0voNedX2UKGgGR8B702wxFiKBaAdLc2gIR0B+R4abWmP6dX2UKGgGR8BV9/9LpRoAaAdLY2gIR0B+R9k1/DtPdX2UKGgGR8BmKxJbt7a7aAdLNmgIR0B+SEUpNKywdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d0371cf9a5c090306763e3734a5c1713961d174bf6a982d1e9332bc978c3c83
3
+ size 146600
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca540469e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca54046a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca54046b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca54046b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fca54046c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fca54046cb0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca54046d40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca54046dd0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fca54046e60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca54046ef0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca54046f80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca54047010>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fca540492c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 32768,
25
+ "_total_timesteps": 10,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1687951104049428911,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqvH75M0Bg/N5GbvtVqb79Vydw9UPTVvQAAAAAAAAAAtpmJPtyt1D7+9wo/qSikvyGHA76N1c09AAAAAAAAAACzHgm9zHm1PzuB+r4hGIK8AxogPZLMrz0AAAAAAAAAAM24TzwSmKI/6osOPWW12b6ztxk7fIY/PAAAAAAAAAAAgBs5PnATQT8iWBQ/VoSBv9PHpr6iunm+AAAAAAAAAAACgwG/DqrLPc5Lbb8xgsq/DsnnPy/tJT8AAAAAAAAAAAOAlj4Zp6o/UiE5P32N7b7qAxC/4vWVvgAAAAAAAAAAwC3SPSjqOT9QOcQ+/9hvv8azy772L9W+AAAAAAAAAAAzu4a7ZZmTP2KZ+r2C2ha/ZfQHPm5TjTwAAAAAAAAAALNKPz7un5k/eOcfP0EeU78I642/8tMOvwAAAAAAAAAA9jfXvngVoj8jLkO/tq4SvxPi1z7G6xs+AAAAAAAAAADjnoM+VeDdP4blSj+N9Is7UZk9v4UDzr4AAAAAAAAAAJp2N70XWaI/TsDZvrymFr/KcqA9GkT2PQAAAAAAAAAAZpEnPq9KrT8DB98+T8ebvsqxhb4DX6W9AAAAAAAAAACtfrM+q5BhPyrggD93si+/wdfTvhCtRr4AAAAAAAAAACK2lr4SJJE/XFwmv75WJ79Ua/c+SE9GPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -3275.8,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFFXomois4mMAWyUS0yMAXSUR0B+I5KEnLJTdX2UKGgGR8BWn8vugHu7aAdLa2gIR0B+JEAn2IwedX2UKGgGR8AxrFW4mTkiaAdLd2gIR0B+JLKHO8kEdX2UKGgGR8BUul1bJOnEaAdLXmgIR0B+JM150KZ2dX2UKGgGR8Bd/xkiD/VBaAdLRWgIR0B+JNiExqO+dX2UKGgGR8A4No3Jgb6yaAdLSGgIR0B+JRggHNX6dX2UKGgGR8BKGG2CuloEaAdLPGgIR0B+Ji+dsi0OdX2UKGgGR8Aw9H6/IsAeaAdLgWgIR0B+Jk9yLhrFdX2UKGgGR8BuS9xffGdaaAdLSmgIR0B+JsOf/WDpdX2UKGgGR8BeMJ4W1twaaAdLVWgIR0B+J6nP3SKFdX2UKGgGR8BVMNKAavRraAdLP2gIR0B+KC3QUpNLdX2UKGgGR8Byqqon8baRaAdLZmgIR0B+KHZWaMJhdX2UKGgGR8BnMN0DEFW5aAdLVmgIR0B+KFt+CsfadX2UKGgGR8BexAzDXOGCaAdLV2gIR0B+KJ1nuiN9dX2UKGgGR8BY9By0a6z3aAdLgmgIR0B+KVDc/MW5dX2UKGgGR8B/0dgVoHs1aAdLcmgIR0B+KS6XjU/fdX2UKGgGR8Brd2ZAprk9aAdLXWgIR0B+KSup0fYBdX2UKGgGR8BgfiOT7l7uaAdLYGgIR0B+KYmtyPuHdX2UKGgGR8BZS4EbHZK4aAdLT2gIR0B+KcgRsdkrdX2UKGgGR8BZliqU/wAmaAdLVmgIR0B+Kg5tFa0QdX2UKGgGR8BiDMOuq3mWaAdLVWgIR0B+KmN1hb4bdX2UKGgGR8BlgV70Fr2yaAdLdWgIR0B+LEolUp/gdX2UKGgGR8B0WTQ5WBBiaAdLZ2gIR0B+LOt4iX6ZdX2UKGgGR8Bm1Sk690zTaAdLT2gIR0B+LOKKpDNRdX2UKGgGR8BbQ7UXpGF0aAdLS2gIR0B+LSdFvybydX2UKGgGR8BlBT5ylvZRaAdLZGgIR0B+LV0yP+4tdX2UKGgGR8BnuBjJ+2E1aAdLP2gIR0B+LZC/oJRgdX2UKGgGR8B1/BHoX9BKaAdLcmgIR0B+LdiNKh+OdX2UKGgGR8BT9FNHpbD/aAdLTGgIR0B+Li75Ec81dX2UKGgGR8BhdSUX531SaAdLTGgIR0B+LohgVoHtdX2UKGgGR8BmrhJul41QaAdLZGgIR0B+Lu2OQyRCdX2UKGgGR8BahKxoqTbGaAdLXWgIR0B+LzUSZjQRdX2UKGgGR8BxoLsiSq2jaAdLamgIR0B+LzBHkLhKdX2UKGgGR8Byx/kzXSSeaAdLZ2gIR0B+L0Wac7QtdX2UKGgGR8Bn2p9E1EVnaAdLW2gIR0B+L67CiyprdX2UKGgGR8BGACR4hUzbaAdLWWgIR0B+MChkAggYdX2UKGgGR8BaadI065oXaAdLQGgIR0B+MNDneSB9dX2UKGgGR8BbTERWcSXdaAdLcWgIR0B+MTgWJrLydX2UKGgGR8BRmOxjawljaAdLT2gIR0B+MeU+s5n2dX2UKGgGR8BgxiqyWzF/aAdLS2gIR0B+Md6ol2NedX2UKGgGR8BdJRUNrj5saAdLXmgIR0B+Mh2St/4JdX2UKGgGR0A87jc2zfJnaAdLWWgIR0B+MuzHCGeudX2UKGgGR8BSDylabF0gaAdLQWgIR0B+MuAjIJZ4dX2UKGgGR8BVAInSfDk3aAdLXmgIR0B+M4H/tICmdX2UKGgGR8BmEYr4FiazaAdLRGgIR0B+M1HavicYdX2UKGgGR8BaAp3Tuv2XaAdLRGgIR0B+M2g7HQyAdX2UKGgGR8Bv+HI6r/83aAdLXGgIR0B+M8ssg+yJdX2UKGgGR8B74q87IT4+aAdLeGgIR0B+ND4CZF5OdX2UKGgGR8BUoDN6gM+eaAdLUGgIR0B+NKFfzBhydX2UKGgGR8BqS0snRb8naAdLaGgIR0B+NOr92ovSdX2UKGgGR8Ba8fUSZjQRaAdLbGgIR0B+NdvUBnzydX2UKGgGR8Bi4rGvOhTPaAdLQmgIR0B+Ng8aGYa6dX2UKGgGR8B6kTICEHt4aAdLWWgIR0B+NtRhttQ9dX2UKGgGR8BQzG1pj+aSaAdLPmgIR0B+NsW8AaNudX2UKGgGR8BjuG0CzTnaaAdLbWgIR0B+Nvi1iONpdX2UKGgGR8BW1uGTLW7OaAdLdGgIR0B+OC19fCyhdX2UKGgGR8Bz2VP2wmmcaAdLV2gIR0B+OHvYvnKXdX2UKGgGR8B1Rn7pFCswaAdLZGgIR0B+OHzWf9P2dX2UKGgGR8Bf4Kl1r6+GaAdLUmgIR0B+OKdrftQbdX2UKGgGR8BkNxtJnQIEaAdLSGgIR0B+OOFHrhR7dX2UKGgGR8BnY1JJ5E+gaAdLcWgIR0B+ORdPci4bdX2UKGgGR8Bh9dPP9kz5aAdLY2gIR0B+Odlar3j/dX2UKGgGR8Bks5l6JIlMaAdLamgIR0B+OpLuhK15dX2UKGgGR8BrNAtSQ5mzaAdLXmgIR0B+Ovj7yhBadX2UKGgGR8BObSLhrFfiaAdLg2gIR0B+O8Yj0L+hdX2UKGgGR8BWc0zO5avBaAdLT2gIR0B+PAYYR/VidX2UKGgGR8BiK4e9zwMIaAdLXmgIR0B+PAJAt4A0dX2UKGgGR8BbrGVeKKpDaAdLPmgIR0B+PItoSL62dX2UKGgGR8BqDO6wt8NQaAdLT2gIR0B+PYJKJ2t/dX2UKGgGR8BCJShrWRRuaAdLiGgIR0B+PaEf1YhddX2UKGgGR8BOZsQd0aIfaAdLRWgIR0B+PZgogFHKdX2UKGgGR8BRFn003wTeaAdLUGgIR0B+PoBMi8nNdX2UKGgGR8BbyuMl1KXfaAdLdGgIR0B+PsA5q/M4dX2UKGgGR8BgAi20AtFsaAdLTGgIR0B+PwhKUVzqdX2UKGgGR8B0H0Y4yXUpaAdLjGgIR0B+P2DaoMrmdX2UKGgGR8Bd3GwiaAnVaAdLimgIR0B+P/tdAxBWdX2UKGgGR8BQxCU5dWyUaAdLPWgIR0B+P+9AX2ugdX2UKGgGR8AzbAnlXA/LaAdLdmgIR0B+QF0cOskqdX2UKGgGR8BtpRybQTmGaAdLTmgIR0B+QEX/HYHxdX2UKGgGR8BQebqyGBWgaAdLQmgIR0B+QIIrvsqsdX2UKGgGR8B1nvag2606aAdLeWgIR0B+QLfNzKcNdX2UKGgGR8Bq0iUgSvkjaAdLXmgIR0B+QOPluFYddX2UKGgGR8BY0k6T4cm0aAdLS2gIR0B+QYNXo1UEdX2UKGgGR8BX4ozabnX/aAdLVWgIR0B+QZ6IFeOXdX2UKGgGR8BVdXtrsSkCaAdLTWgIR0B+Q4hA4XGfdX2UKGgGR8B3vniJfpljaAdLWmgIR0B+RCO938oAdX2UKGgGR8ByouP5pJwsaAdLbGgIR0B+RFpZfUnYdX2UKGgGR8B29he4TbnHaAdLUWgIR0B+RHCSA6MjdX2UKGgGR8BVLJzcRDkVaAdLRWgIR0B+RI2S+xnndX2UKGgGR8Be2lar3j+8aAdLSmgIR0B+RIvEjxCqdX2UKGgGR8BlPGNm16VuaAdLRmgIR0B+RNoUSIxhdX2UKGgGR8Bbl+ieumrKaAdLZWgIR0B+RVcu8K5TdX2UKGgGR8BjJ3EbYK6XaAdLemgIR0B+RU42jwhGdX2UKGgGR8BayEadc0LuaAdLfWgIR0B+RXGXHBDYdX2UKGgGR8Brrr0HyEteaAdLTWgIR0B+RX5AQg9vdX2UKGgGR8Bh9B/iHZbqaAdLTmgIR0B+RbaPCEYgdX2UKGgGR8Bdr6xxDLKWaAdLZWgIR0B+Rjb0voNedX2UKGgGR8B702wxFiKBaAdLc2gIR0B+R4abWmP6dX2UKGgGR8BV9/9LpRoAaAdLY2gIR0B+R9k1/DtPdX2UKGgGR8BmKxJbt7a7aAdLNmgIR0B+SEUpNKywdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 10,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab6e5222212ffad747d6f63bc4020f2f7b1dc938fb71f083053b6d5472b4e0bf
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:052a3958dc626cae3391bd07e841bb924a1335561b14185dc9a7141b37c0cb2e
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (107 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2931.6546117000007, "std_reward": 839.500068748505, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-28T11:33:39.454450"}