Commit
·
e8ccf38
1
Parent(s):
64df2b4
Uploading unit 1 lunar RL agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -2931.65 +/- 839.50
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca540469e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca54046a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca54046b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca54046b90>", "_build": "<function ActorCriticPolicy._build at 0x7fca54046c20>", "forward": "<function ActorCriticPolicy.forward at 0x7fca54046cb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca54046d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca54046dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fca54046e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca54046ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca54046f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca54047010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fca540492c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 32768, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687951104049428911, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqvH75M0Bg/N5GbvtVqb79Vydw9UPTVvQAAAAAAAAAAtpmJPtyt1D7+9wo/qSikvyGHA76N1c09AAAAAAAAAACzHgm9zHm1PzuB+r4hGIK8AxogPZLMrz0AAAAAAAAAAM24TzwSmKI/6osOPWW12b6ztxk7fIY/PAAAAAAAAAAAgBs5PnATQT8iWBQ/VoSBv9PHpr6iunm+AAAAAAAAAAACgwG/DqrLPc5Lbb8xgsq/DsnnPy/tJT8AAAAAAAAAAAOAlj4Zp6o/UiE5P32N7b7qAxC/4vWVvgAAAAAAAAAAwC3SPSjqOT9QOcQ+/9hvv8azy772L9W+AAAAAAAAAAAzu4a7ZZmTP2KZ+r2C2ha/ZfQHPm5TjTwAAAAAAAAAALNKPz7un5k/eOcfP0EeU78I642/8tMOvwAAAAAAAAAA9jfXvngVoj8jLkO/tq4SvxPi1z7G6xs+AAAAAAAAAADjnoM+VeDdP4blSj+N9Is7UZk9v4UDzr4AAAAAAAAAAJp2N70XWaI/TsDZvrymFr/KcqA9GkT2PQAAAAAAAAAAZpEnPq9KrT8DB98+T8ebvsqxhb4DX6W9AAAAAAAAAACtfrM+q5BhPyrggD93si+/wdfTvhCtRr4AAAAAAAAAACK2lr4SJJE/XFwmv75WJ79Ua/c+SE9GPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -3275.8, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFFXomois4mMAWyUS0yMAXSUR0B+I5KEnLJTdX2UKGgGR8BWn8vugHu7aAdLa2gIR0B+JEAn2IwedX2UKGgGR8AxrFW4mTkiaAdLd2gIR0B+JLKHO8kEdX2UKGgGR8BUul1bJOnEaAdLXmgIR0B+JM150KZ2dX2UKGgGR8Bd/xkiD/VBaAdLRWgIR0B+JNiExqO+dX2UKGgGR8A4No3Jgb6yaAdLSGgIR0B+JRggHNX6dX2UKGgGR8BKGG2CuloEaAdLPGgIR0B+Ji+dsi0OdX2UKGgGR8Aw9H6/IsAeaAdLgWgIR0B+Jk9yLhrFdX2UKGgGR8BuS9xffGdaaAdLSmgIR0B+JsOf/WDpdX2UKGgGR8BeMJ4W1twaaAdLVWgIR0B+J6nP3SKFdX2UKGgGR8BVMNKAavRraAdLP2gIR0B+KC3QUpNLdX2UKGgGR8Byqqon8baRaAdLZmgIR0B+KHZWaMJhdX2UKGgGR8BnMN0DEFW5aAdLVmgIR0B+KFt+CsfadX2UKGgGR8BexAzDXOGCaAdLV2gIR0B+KJ1nuiN9dX2UKGgGR8BY9By0a6z3aAdLgmgIR0B+KVDc/MW5dX2UKGgGR8B/0dgVoHs1aAdLcmgIR0B+KS6XjU/fdX2UKGgGR8Brd2ZAprk9aAdLXWgIR0B+KSup0fYBdX2UKGgGR8BgfiOT7l7uaAdLYGgIR0B+KYmtyPuHdX2UKGgGR8BZS4EbHZK4aAdLT2gIR0B+KcgRsdkrdX2UKGgGR8BZliqU/wAmaAdLVmgIR0B+Kg5tFa0QdX2UKGgGR8BiDMOuq3mWaAdLVWgIR0B+KmN1hb4bdX2UKGgGR8BlgV70Fr2yaAdLdWgIR0B+LEolUp/gdX2UKGgGR8B0WTQ5WBBiaAdLZ2gIR0B+LOt4iX6ZdX2UKGgGR8Bm1Sk690zTaAdLT2gIR0B+LOKKpDNRdX2UKGgGR8BbQ7UXpGF0aAdLS2gIR0B+LSdFvybydX2UKGgGR8BlBT5ylvZRaAdLZGgIR0B+LV0yP+4tdX2UKGgGR8BnuBjJ+2E1aAdLP2gIR0B+LZC/oJRgdX2UKGgGR8B1/BHoX9BKaAdLcmgIR0B+LdiNKh+OdX2UKGgGR8BT9FNHpbD/aAdLTGgIR0B+Li75Ec81dX2UKGgGR8BhdSUX531SaAdLTGgIR0B+LohgVoHtdX2UKGgGR8BmrhJul41QaAdLZGgIR0B+Lu2OQyRCdX2UKGgGR8BahKxoqTbGaAdLXWgIR0B+LzUSZjQRdX2UKGgGR8BxoLsiSq2jaAdLamgIR0B+LzBHkLhKdX2UKGgGR8Byx/kzXSSeaAdLZ2gIR0B+L0Wac7QtdX2UKGgGR8Bn2p9E1EVnaAdLW2gIR0B+L67CiyprdX2UKGgGR8BGACR4hUzbaAdLWWgIR0B+MChkAggYdX2UKGgGR8BaadI065oXaAdLQGgIR0B+MNDneSB9dX2UKGgGR8BbTERWcSXdaAdLcWgIR0B+MTgWJrLydX2UKGgGR8BRmOxjawljaAdLT2gIR0B+MeU+s5n2dX2UKGgGR8BgxiqyWzF/aAdLS2gIR0B+Md6ol2NedX2UKGgGR8BdJRUNrj5saAdLXmgIR0B+Mh2St/4JdX2UKGgGR0A87jc2zfJnaAdLWWgIR0B+MuzHCGeudX2UKGgGR8BSDylabF0gaAdLQWgIR0B+MuAjIJZ4dX2UKGgGR8BVAInSfDk3aAdLXmgIR0B+M4H/tICmdX2UKGgGR8BmEYr4FiazaAdLRGgIR0B+M1HavicYdX2UKGgGR8BaAp3Tuv2XaAdLRGgIR0B+M2g7HQyAdX2UKGgGR8Bv+HI6r/83aAdLXGgIR0B+M8ssg+yJdX2UKGgGR8B74q87IT4+aAdLeGgIR0B+ND4CZF5OdX2UKGgGR8BUoDN6gM+eaAdLUGgIR0B+NKFfzBhydX2UKGgGR8BqS0snRb8naAdLaGgIR0B+NOr92ovSdX2UKGgGR8Ba8fUSZjQRaAdLbGgIR0B+NdvUBnzydX2UKGgGR8Bi4rGvOhTPaAdLQmgIR0B+Ng8aGYa6dX2UKGgGR8B6kTICEHt4aAdLWWgIR0B+NtRhttQ9dX2UKGgGR8BQzG1pj+aSaAdLPmgIR0B+NsW8AaNudX2UKGgGR8BjuG0CzTnaaAdLbWgIR0B+Nvi1iONpdX2UKGgGR8BW1uGTLW7OaAdLdGgIR0B+OC19fCyhdX2UKGgGR8Bz2VP2wmmcaAdLV2gIR0B+OHvYvnKXdX2UKGgGR8B1Rn7pFCswaAdLZGgIR0B+OHzWf9P2dX2UKGgGR8Bf4Kl1r6+GaAdLUmgIR0B+OKdrftQbdX2UKGgGR8BkNxtJnQIEaAdLSGgIR0B+OOFHrhR7dX2UKGgGR8BnY1JJ5E+gaAdLcWgIR0B+ORdPci4bdX2UKGgGR8Bh9dPP9kz5aAdLY2gIR0B+Odlar3j/dX2UKGgGR8Bks5l6JIlMaAdLamgIR0B+OpLuhK15dX2UKGgGR8BrNAtSQ5mzaAdLXmgIR0B+Ovj7yhBadX2UKGgGR8BObSLhrFfiaAdLg2gIR0B+O8Yj0L+hdX2UKGgGR8BWc0zO5avBaAdLT2gIR0B+PAYYR/VidX2UKGgGR8BiK4e9zwMIaAdLXmgIR0B+PAJAt4A0dX2UKGgGR8BbrGVeKKpDaAdLPmgIR0B+PItoSL62dX2UKGgGR8BqDO6wt8NQaAdLT2gIR0B+PYJKJ2t/dX2UKGgGR8BCJShrWRRuaAdLiGgIR0B+PaEf1YhddX2UKGgGR8BOZsQd0aIfaAdLRWgIR0B+PZgogFHKdX2UKGgGR8BRFn003wTeaAdLUGgIR0B+PoBMi8nNdX2UKGgGR8BbyuMl1KXfaAdLdGgIR0B+PsA5q/M4dX2UKGgGR8BgAi20AtFsaAdLTGgIR0B+PwhKUVzqdX2UKGgGR8B0H0Y4yXUpaAdLjGgIR0B+P2DaoMrmdX2UKGgGR8Bd3GwiaAnVaAdLimgIR0B+P/tdAxBWdX2UKGgGR8BQxCU5dWyUaAdLPWgIR0B+P+9AX2ugdX2UKGgGR8AzbAnlXA/LaAdLdmgIR0B+QF0cOskqdX2UKGgGR8BtpRybQTmGaAdLTmgIR0B+QEX/HYHxdX2UKGgGR8BQebqyGBWgaAdLQmgIR0B+QIIrvsqsdX2UKGgGR8B1nvag2606aAdLeWgIR0B+QLfNzKcNdX2UKGgGR8Bq0iUgSvkjaAdLXmgIR0B+QOPluFYddX2UKGgGR8BY0k6T4cm0aAdLS2gIR0B+QYNXo1UEdX2UKGgGR8BX4ozabnX/aAdLVWgIR0B+QZ6IFeOXdX2UKGgGR8BVdXtrsSkCaAdLTWgIR0B+Q4hA4XGfdX2UKGgGR8B3vniJfpljaAdLWmgIR0B+RCO938oAdX2UKGgGR8ByouP5pJwsaAdLbGgIR0B+RFpZfUnYdX2UKGgGR8B29he4TbnHaAdLUWgIR0B+RHCSA6MjdX2UKGgGR8BVLJzcRDkVaAdLRWgIR0B+RI2S+xnndX2UKGgGR8Be2lar3j+8aAdLSmgIR0B+RIvEjxCqdX2UKGgGR8BlPGNm16VuaAdLRmgIR0B+RNoUSIxhdX2UKGgGR8Bbl+ieumrKaAdLZWgIR0B+RVcu8K5TdX2UKGgGR8BjJ3EbYK6XaAdLemgIR0B+RU42jwhGdX2UKGgGR8BayEadc0LuaAdLfWgIR0B+RXGXHBDYdX2UKGgGR8Brrr0HyEteaAdLTWgIR0B+RX5AQg9vdX2UKGgGR8Bh9B/iHZbqaAdLTmgIR0B+RbaPCEYgdX2UKGgGR8Bdr6xxDLKWaAdLZWgIR0B+Rjb0voNedX2UKGgGR8B702wxFiKBaAdLc2gIR0B+R4abWmP6dX2UKGgGR8BV9/9LpRoAaAdLY2gIR0B+R9k1/DtPdX2UKGgGR8BmKxJbt7a7aAdLNmgIR0B+SEUpNKywdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d0371cf9a5c090306763e3734a5c1713961d174bf6a982d1e9332bc978c3c83
|
| 3 |
+
size 146600
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fca540469e0>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca54046a70>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca54046b00>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca54046b90>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fca54046c20>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fca54046cb0>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca54046d40>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca54046dd0>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fca54046e60>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca54046ef0>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca54046f80>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca54047010>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fca540492c0>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 32768,
|
| 25 |
+
"_total_timesteps": 10,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1687951104049428911,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqvH75M0Bg/N5GbvtVqb79Vydw9UPTVvQAAAAAAAAAAtpmJPtyt1D7+9wo/qSikvyGHA76N1c09AAAAAAAAAACzHgm9zHm1PzuB+r4hGIK8AxogPZLMrz0AAAAAAAAAAM24TzwSmKI/6osOPWW12b6ztxk7fIY/PAAAAAAAAAAAgBs5PnATQT8iWBQ/VoSBv9PHpr6iunm+AAAAAAAAAAACgwG/DqrLPc5Lbb8xgsq/DsnnPy/tJT8AAAAAAAAAAAOAlj4Zp6o/UiE5P32N7b7qAxC/4vWVvgAAAAAAAAAAwC3SPSjqOT9QOcQ+/9hvv8azy772L9W+AAAAAAAAAAAzu4a7ZZmTP2KZ+r2C2ha/ZfQHPm5TjTwAAAAAAAAAALNKPz7un5k/eOcfP0EeU78I642/8tMOvwAAAAAAAAAA9jfXvngVoj8jLkO/tq4SvxPi1z7G6xs+AAAAAAAAAADjnoM+VeDdP4blSj+N9Is7UZk9v4UDzr4AAAAAAAAAAJp2N70XWaI/TsDZvrymFr/KcqA9GkT2PQAAAAAAAAAAZpEnPq9KrT8DB98+T8ebvsqxhb4DX6W9AAAAAAAAAACtfrM+q5BhPyrggD93si+/wdfTvhCtRr4AAAAAAAAAACK2lr4SJJE/XFwmv75WJ79Ua/c+SE9GPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -3275.8,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFFXomois4mMAWyUS0yMAXSUR0B+I5KEnLJTdX2UKGgGR8BWn8vugHu7aAdLa2gIR0B+JEAn2IwedX2UKGgGR8AxrFW4mTkiaAdLd2gIR0B+JLKHO8kEdX2UKGgGR8BUul1bJOnEaAdLXmgIR0B+JM150KZ2dX2UKGgGR8Bd/xkiD/VBaAdLRWgIR0B+JNiExqO+dX2UKGgGR8A4No3Jgb6yaAdLSGgIR0B+JRggHNX6dX2UKGgGR8BKGG2CuloEaAdLPGgIR0B+Ji+dsi0OdX2UKGgGR8Aw9H6/IsAeaAdLgWgIR0B+Jk9yLhrFdX2UKGgGR8BuS9xffGdaaAdLSmgIR0B+JsOf/WDpdX2UKGgGR8BeMJ4W1twaaAdLVWgIR0B+J6nP3SKFdX2UKGgGR8BVMNKAavRraAdLP2gIR0B+KC3QUpNLdX2UKGgGR8Byqqon8baRaAdLZmgIR0B+KHZWaMJhdX2UKGgGR8BnMN0DEFW5aAdLVmgIR0B+KFt+CsfadX2UKGgGR8BexAzDXOGCaAdLV2gIR0B+KJ1nuiN9dX2UKGgGR8BY9By0a6z3aAdLgmgIR0B+KVDc/MW5dX2UKGgGR8B/0dgVoHs1aAdLcmgIR0B+KS6XjU/fdX2UKGgGR8Brd2ZAprk9aAdLXWgIR0B+KSup0fYBdX2UKGgGR8BgfiOT7l7uaAdLYGgIR0B+KYmtyPuHdX2UKGgGR8BZS4EbHZK4aAdLT2gIR0B+KcgRsdkrdX2UKGgGR8BZliqU/wAmaAdLVmgIR0B+Kg5tFa0QdX2UKGgGR8BiDMOuq3mWaAdLVWgIR0B+KmN1hb4bdX2UKGgGR8BlgV70Fr2yaAdLdWgIR0B+LEolUp/gdX2UKGgGR8B0WTQ5WBBiaAdLZ2gIR0B+LOt4iX6ZdX2UKGgGR8Bm1Sk690zTaAdLT2gIR0B+LOKKpDNRdX2UKGgGR8BbQ7UXpGF0aAdLS2gIR0B+LSdFvybydX2UKGgGR8BlBT5ylvZRaAdLZGgIR0B+LV0yP+4tdX2UKGgGR8BnuBjJ+2E1aAdLP2gIR0B+LZC/oJRgdX2UKGgGR8B1/BHoX9BKaAdLcmgIR0B+LdiNKh+OdX2UKGgGR8BT9FNHpbD/aAdLTGgIR0B+Li75Ec81dX2UKGgGR8BhdSUX531SaAdLTGgIR0B+LohgVoHtdX2UKGgGR8BmrhJul41QaAdLZGgIR0B+Lu2OQyRCdX2UKGgGR8BahKxoqTbGaAdLXWgIR0B+LzUSZjQRdX2UKGgGR8BxoLsiSq2jaAdLamgIR0B+LzBHkLhKdX2UKGgGR8Byx/kzXSSeaAdLZ2gIR0B+L0Wac7QtdX2UKGgGR8Bn2p9E1EVnaAdLW2gIR0B+L67CiyprdX2UKGgGR8BGACR4hUzbaAdLWWgIR0B+MChkAggYdX2UKGgGR8BaadI065oXaAdLQGgIR0B+MNDneSB9dX2UKGgGR8BbTERWcSXdaAdLcWgIR0B+MTgWJrLydX2UKGgGR8BRmOxjawljaAdLT2gIR0B+MeU+s5n2dX2UKGgGR8BgxiqyWzF/aAdLS2gIR0B+Md6ol2NedX2UKGgGR8BdJRUNrj5saAdLXmgIR0B+Mh2St/4JdX2UKGgGR0A87jc2zfJnaAdLWWgIR0B+MuzHCGeudX2UKGgGR8BSDylabF0gaAdLQWgIR0B+MuAjIJZ4dX2UKGgGR8BVAInSfDk3aAdLXmgIR0B+M4H/tICmdX2UKGgGR8BmEYr4FiazaAdLRGgIR0B+M1HavicYdX2UKGgGR8BaAp3Tuv2XaAdLRGgIR0B+M2g7HQyAdX2UKGgGR8Bv+HI6r/83aAdLXGgIR0B+M8ssg+yJdX2UKGgGR8B74q87IT4+aAdLeGgIR0B+ND4CZF5OdX2UKGgGR8BUoDN6gM+eaAdLUGgIR0B+NKFfzBhydX2UKGgGR8BqS0snRb8naAdLaGgIR0B+NOr92ovSdX2UKGgGR8Ba8fUSZjQRaAdLbGgIR0B+NdvUBnzydX2UKGgGR8Bi4rGvOhTPaAdLQmgIR0B+Ng8aGYa6dX2UKGgGR8B6kTICEHt4aAdLWWgIR0B+NtRhttQ9dX2UKGgGR8BQzG1pj+aSaAdLPmgIR0B+NsW8AaNudX2UKGgGR8BjuG0CzTnaaAdLbWgIR0B+Nvi1iONpdX2UKGgGR8BW1uGTLW7OaAdLdGgIR0B+OC19fCyhdX2UKGgGR8Bz2VP2wmmcaAdLV2gIR0B+OHvYvnKXdX2UKGgGR8B1Rn7pFCswaAdLZGgIR0B+OHzWf9P2dX2UKGgGR8Bf4Kl1r6+GaAdLUmgIR0B+OKdrftQbdX2UKGgGR8BkNxtJnQIEaAdLSGgIR0B+OOFHrhR7dX2UKGgGR8BnY1JJ5E+gaAdLcWgIR0B+ORdPci4bdX2UKGgGR8Bh9dPP9kz5aAdLY2gIR0B+Odlar3j/dX2UKGgGR8Bks5l6JIlMaAdLamgIR0B+OpLuhK15dX2UKGgGR8BrNAtSQ5mzaAdLXmgIR0B+Ovj7yhBadX2UKGgGR8BObSLhrFfiaAdLg2gIR0B+O8Yj0L+hdX2UKGgGR8BWc0zO5avBaAdLT2gIR0B+PAYYR/VidX2UKGgGR8BiK4e9zwMIaAdLXmgIR0B+PAJAt4A0dX2UKGgGR8BbrGVeKKpDaAdLPmgIR0B+PItoSL62dX2UKGgGR8BqDO6wt8NQaAdLT2gIR0B+PYJKJ2t/dX2UKGgGR8BCJShrWRRuaAdLiGgIR0B+PaEf1YhddX2UKGgGR8BOZsQd0aIfaAdLRWgIR0B+PZgogFHKdX2UKGgGR8BRFn003wTeaAdLUGgIR0B+PoBMi8nNdX2UKGgGR8BbyuMl1KXfaAdLdGgIR0B+PsA5q/M4dX2UKGgGR8BgAi20AtFsaAdLTGgIR0B+PwhKUVzqdX2UKGgGR8B0H0Y4yXUpaAdLjGgIR0B+P2DaoMrmdX2UKGgGR8Bd3GwiaAnVaAdLimgIR0B+P/tdAxBWdX2UKGgGR8BQxCU5dWyUaAdLPWgIR0B+P+9AX2ugdX2UKGgGR8AzbAnlXA/LaAdLdmgIR0B+QF0cOskqdX2UKGgGR8BtpRybQTmGaAdLTmgIR0B+QEX/HYHxdX2UKGgGR8BQebqyGBWgaAdLQmgIR0B+QIIrvsqsdX2UKGgGR8B1nvag2606aAdLeWgIR0B+QLfNzKcNdX2UKGgGR8Bq0iUgSvkjaAdLXmgIR0B+QOPluFYddX2UKGgGR8BY0k6T4cm0aAdLS2gIR0B+QYNXo1UEdX2UKGgGR8BX4ozabnX/aAdLVWgIR0B+QZ6IFeOXdX2UKGgGR8BVdXtrsSkCaAdLTWgIR0B+Q4hA4XGfdX2UKGgGR8B3vniJfpljaAdLWmgIR0B+RCO938oAdX2UKGgGR8ByouP5pJwsaAdLbGgIR0B+RFpZfUnYdX2UKGgGR8B29he4TbnHaAdLUWgIR0B+RHCSA6MjdX2UKGgGR8BVLJzcRDkVaAdLRWgIR0B+RI2S+xnndX2UKGgGR8Be2lar3j+8aAdLSmgIR0B+RIvEjxCqdX2UKGgGR8BlPGNm16VuaAdLRmgIR0B+RNoUSIxhdX2UKGgGR8Bbl+ieumrKaAdLZWgIR0B+RVcu8K5TdX2UKGgGR8BjJ3EbYK6XaAdLemgIR0B+RU42jwhGdX2UKGgGR8BayEadc0LuaAdLfWgIR0B+RXGXHBDYdX2UKGgGR8Brrr0HyEteaAdLTWgIR0B+RX5AQg9vdX2UKGgGR8Bh9B/iHZbqaAdLTmgIR0B+RbaPCEYgdX2UKGgGR8Bdr6xxDLKWaAdLZWgIR0B+Rjb0voNedX2UKGgGR8B702wxFiKBaAdLc2gIR0B+R4abWmP6dX2UKGgGR8BV9/9LpRoAaAdLY2gIR0B+R9k1/DtPdX2UKGgGR8BmKxJbt7a7aAdLNmgIR0B+SEUpNKywdWUu"
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 10,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 2048,
|
| 81 |
+
"gamma": 0.99,
|
| 82 |
+
"gae_lambda": 0.95,
|
| 83 |
+
"ent_coef": 0.0,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 10,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab6e5222212ffad747d6f63bc4020f2f7b1dc938fb71f083053b6d5472b4e0bf
|
| 3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:052a3958dc626cae3391bd07e841bb924a1335561b14185dc9a7141b37c0cb2e
|
| 3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
| 2 |
+
- Python: 3.10.12
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.0.1+cu118
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.22.4
|
| 7 |
+
- Cloudpickle: 2.2.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
|
Binary file (107 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": -2931.6546117000007, "std_reward": 839.500068748505, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-28T11:33:39.454450"}
|