SeyedAli commited on
Commit
419504c
1 Parent(s): 3d4a84d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -5
README.md CHANGED
@@ -99,10 +99,10 @@ The following hyperparameters were used during training:
99
  # Both models generate vectors with 768 dimensions.
100
  from transformers import CLIPVisionModel, RobertaModel, AutoTokenizer, CLIPFeatureExtractor
101
  # download pre-trained models
102
- vision_encoder = CLIPVisionModel.from_pretrained('SeyedAli/persian-clip')
103
- preprocessor = CLIPFeatureExtractor.from_pretrained('SeyedAli/persian-clip')
104
- text_encoder = RobertaModel.from_pretrained('SeyedAli/persian-clip')
105
- tokenizer = AutoTokenizer.from_pretrained('SeyedAli/persian-clip')
106
  # define input image and input text
107
  text = 'something'
108
  image = PIL.Image.open('my_favorite_image.jpg')
@@ -119,8 +119,18 @@ The followings are just some use cases of Persian-CLIP on 25K Unsplash images
119
  * use pip install -q git+https://github.com/sajjjadayobi/clipfa.git
120
  ```python
121
  from clipfa import CLIPDemo
 
 
 
 
 
 
 
 
 
122
  demo = CLIPDemo(vision_encoder, text_encoder, tokenizer)
123
  demo.compute_text_embeddings(['متن 3' ,'متن 2' ,'متن 1'])
124
  demo.compute_image_embeddings(['my_favorite_image.jpg'])
125
- demo.zero_shot(image_path='my_favorite_image.jpg')
 
126
  ```
 
99
  # Both models generate vectors with 768 dimensions.
100
  from transformers import CLIPVisionModel, RobertaModel, AutoTokenizer, CLIPFeatureExtractor
101
  # download pre-trained models
102
+ vision_encoder = CLIPVisionModel.from_pretrained('SeyedAli/Persian-CLIP')
103
+ preprocessor = CLIPFeatureExtractor.from_pretrained('SeyedAli/Persian-CLIP')
104
+ text_encoder = RobertaModel.from_pretrained('SeyedAli/Persian-CLIP')
105
+ tokenizer = AutoTokenizer.from_pretrained('SeyedAli/Persian-CLIP')
106
  # define input image and input text
107
  text = 'something'
108
  image = PIL.Image.open('my_favorite_image.jpg')
 
119
  * use pip install -q git+https://github.com/sajjjadayobi/clipfa.git
120
  ```python
121
  from clipfa import CLIPDemo
122
+ import torch
123
+ # Both models generate vectors with 768 dimensions.
124
+ from transformers import CLIPVisionModel, RobertaModel, AutoTokenizer, CLIPFeatureExtractor
125
+ # download pre-trained models
126
+ vision_encoder = CLIPVisionModel.from_pretrained('SeyedAli/Persian-CLIP')
127
+ preprocessor = CLIPFeatureExtractor.from_pretrained('SeyedAli/Persian-CLIP')
128
+ text_encoder = RobertaModel.from_pretrained('SeyedAli/Persian-CLIP')
129
+ tokenizer = AutoTokenizer.from_pretrained('SeyedAli/Persian-CLIP')
130
+
131
  demo = CLIPDemo(vision_encoder, text_encoder, tokenizer)
132
  demo.compute_text_embeddings(['متن 3' ,'متن 2' ,'متن 1'])
133
  demo.compute_image_embeddings(['my_favorite_image.jpg'])
134
+ demo.zero_shot(image_path='my_favorite_image.jpg')
135
+
136
  ```