Sevil commited on
Commit
6473364
·
1 Parent(s): afb2a9d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -0
README.md ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cnn_dailymail
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: t5-small-finetuned-cnndm_3epoch_v2
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: cnn_dailymail
17
+ type: cnn_dailymail
18
+ args: 3.0.0
19
+ metrics:
20
+ - name: Rouge1
21
+ type: rouge
22
+ value: 24.7696
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # t5-small-finetuned-cnndm_3epoch_v2
29
+
30
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 1.6070
33
+ - Rouge1: 24.7696
34
+ - Rouge2: 11.9467
35
+ - Rougel: 20.4495
36
+ - Rougelsum: 23.3341
37
+ - Gen Len: 18.9999
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 0.0003
57
+ - train_batch_size: 4
58
+ - eval_batch_size: 4
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 3
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
68
+ |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
69
+ | 1.9695 | 0.07 | 5000 | 1.7781 | 24.2253 | 11.472 | 20.0367 | 22.8469 | 18.9962 |
70
+ | 1.9536 | 0.14 | 10000 | 1.7575 | 24.2983 | 11.469 | 20.0054 | 22.9144 | 18.9995 |
71
+ | 1.9452 | 0.21 | 15000 | 1.7406 | 24.2068 | 11.4601 | 20.0021 | 22.8375 | 19.0 |
72
+ | 1.931 | 0.28 | 20000 | 1.7302 | 24.1589 | 11.4183 | 19.9736 | 22.7804 | 18.9996 |
73
+ | 1.9182 | 0.35 | 25000 | 1.7381 | 24.1634 | 11.5435 | 19.9643 | 22.7371 | 18.9999 |
74
+ | 1.9072 | 0.42 | 30000 | 1.7239 | 24.4401 | 11.6323 | 20.1243 | 22.9468 | 19.0 |
75
+ | 1.9027 | 0.49 | 35000 | 1.7162 | 24.1801 | 11.4788 | 20.0011 | 22.832 | 18.9996 |
76
+ | 1.8962 | 0.56 | 40000 | 1.7060 | 24.4153 | 11.6275 | 20.1742 | 23.0865 | 18.9998 |
77
+ | 1.8905 | 0.63 | 45000 | 1.7004 | 24.1446 | 11.5402 | 19.9986 | 22.7949 | 18.9983 |
78
+ | 1.8764 | 0.7 | 50000 | 1.6876 | 24.342 | 11.5448 | 20.0993 | 22.9509 | 18.9993 |
79
+ | 1.8772 | 0.77 | 55000 | 1.6879 | 24.3596 | 11.6063 | 20.1592 | 22.9966 | 19.0 |
80
+ | 1.8669 | 0.84 | 60000 | 1.6776 | 24.6201 | 11.6668 | 20.2639 | 23.201 | 18.9994 |
81
+ | 1.8692 | 0.91 | 65000 | 1.6838 | 24.2924 | 11.6129 | 20.1071 | 22.9112 | 18.9997 |
82
+ | 1.8552 | 0.98 | 70000 | 1.6885 | 24.2878 | 11.6773 | 20.1272 | 22.8797 | 18.9992 |
83
+ | 1.8205 | 1.04 | 75000 | 1.6717 | 24.5579 | 11.6421 | 20.2593 | 23.1442 | 19.0 |
84
+ | 1.8074 | 1.11 | 80000 | 1.6604 | 24.495 | 11.6542 | 20.1854 | 23.1091 | 18.9996 |
85
+ | 1.7951 | 1.18 | 85000 | 1.6705 | 24.4504 | 11.6601 | 20.2185 | 23.0597 | 18.9999 |
86
+ | 1.7937 | 1.25 | 90000 | 1.6645 | 24.5535 | 11.6921 | 20.2087 | 23.1099 | 18.9999 |
87
+ | 1.8017 | 1.32 | 95000 | 1.6647 | 24.5179 | 11.8005 | 20.2903 | 23.13 | 18.9993 |
88
+ | 1.7918 | 1.39 | 100000 | 1.6568 | 24.518 | 11.7528 | 20.222 | 23.0767 | 18.9991 |
89
+ | 1.7985 | 1.46 | 105000 | 1.6588 | 24.4636 | 11.636 | 20.1038 | 23.032 | 19.0 |
90
+ | 1.7944 | 1.53 | 110000 | 1.6498 | 24.6611 | 11.78 | 20.3059 | 23.2404 | 18.9999 |
91
+ | 1.7934 | 1.6 | 115000 | 1.6551 | 24.7267 | 11.823 | 20.3377 | 23.273 | 18.9997 |
92
+ | 1.7764 | 1.67 | 120000 | 1.6467 | 24.5052 | 11.8052 | 20.2617 | 23.1228 | 18.9996 |
93
+ | 1.7846 | 1.74 | 125000 | 1.6489 | 24.5423 | 11.8407 | 20.3464 | 23.1433 | 18.9999 |
94
+ | 1.7799 | 1.81 | 130000 | 1.6438 | 24.4915 | 11.7827 | 20.2592 | 23.1299 | 18.9999 |
95
+ | 1.7806 | 1.88 | 135000 | 1.6353 | 24.7804 | 11.9212 | 20.4678 | 23.359 | 19.0 |
96
+ | 1.7784 | 1.95 | 140000 | 1.6338 | 24.7892 | 11.8836 | 20.4227 | 23.373 | 18.9997 |
97
+ | 1.7551 | 2.02 | 145000 | 1.6341 | 24.6828 | 11.8257 | 20.3862 | 23.2536 | 18.9997 |
98
+ | 1.728 | 2.09 | 150000 | 1.6328 | 24.6697 | 11.851 | 20.3943 | 23.2738 | 18.9993 |
99
+ | 1.7201 | 2.16 | 155000 | 1.6309 | 24.7364 | 11.8505 | 20.365 | 23.2885 | 18.9992 |
100
+ | 1.7233 | 2.23 | 160000 | 1.6346 | 24.7298 | 12.0026 | 20.4444 | 23.3156 | 18.9999 |
101
+ | 1.7096 | 2.3 | 165000 | 1.6253 | 24.6443 | 11.9004 | 20.4138 | 23.2583 | 18.9999 |
102
+ | 1.7084 | 2.37 | 170000 | 1.6233 | 24.6688 | 11.8885 | 20.3623 | 23.2608 | 18.9996 |
103
+ | 1.7236 | 2.44 | 175000 | 1.6243 | 24.7174 | 11.8924 | 20.4012 | 23.2948 | 18.9996 |
104
+ | 1.7108 | 2.51 | 180000 | 1.6188 | 24.6013 | 11.8153 | 20.2969 | 23.1867 | 18.9997 |
105
+ | 1.711 | 2.58 | 185000 | 1.6125 | 24.7673 | 11.8646 | 20.3805 | 23.3114 | 18.9997 |
106
+ | 1.7108 | 2.65 | 190000 | 1.6101 | 24.8047 | 11.9763 | 20.494 | 23.3873 | 18.9998 |
107
+ | 1.7114 | 2.72 | 195000 | 1.6123 | 24.7019 | 11.9201 | 20.414 | 23.2823 | 18.9999 |
108
+ | 1.7004 | 2.79 | 200000 | 1.6083 | 24.7525 | 11.9197 | 20.4581 | 23.3371 | 18.9999 |
109
+ | 1.7104 | 2.86 | 205000 | 1.6061 | 24.7057 | 11.8818 | 20.4017 | 23.286 | 18.9999 |
110
+ | 1.7063 | 2.93 | 210000 | 1.6063 | 24.7707 | 11.934 | 20.4473 | 23.3316 | 18.9999 |
111
+ | 1.7039 | 3.0 | 215000 | 1.6070 | 24.7696 | 11.9467 | 20.4495 | 23.3341 | 18.9999 |
112
+
113
+
114
+ ### Framework versions
115
+
116
+ - Transformers 4.17.0
117
+ - Pytorch 1.10.0+cu111
118
+ - Datasets 2.0.0
119
+ - Tokenizers 0.11.6