|
from transformers import GPT2Config |
|
|
|
|
|
class NomicBertConfig(GPT2Config): |
|
model_type = "nomic_bert" |
|
|
|
def __init__(self, |
|
prenorm=False, |
|
parallel_block=False, |
|
parallel_block_tied_norm=False, |
|
rotary_emb_fraction=0.0, |
|
fused_dropout_add_ln=False, |
|
fused_bias_fc=False, |
|
use_flash_attn=False, |
|
use_xentropy=False, |
|
qkv_proj_bias=True, |
|
rotary_emb_base=1000, |
|
rotary_emb_scale_base=None, |
|
rotary_emb_interleaved=False, |
|
mlp_fc1_bias=True, |
|
mlp_fc2_bias=True, |
|
use_rms_norm=False, |
|
causal=False, |
|
type_vocab_size=2, |
|
dense_seq_output=True, |
|
pad_vocab_size_multiple=1, |
|
tie_word_embeddings=True, |
|
rotary_scaling_factor=1.0, |
|
**kwargs, |
|
): |
|
self.prenorm = prenorm |
|
self.parallel_block = parallel_block |
|
self.parallel_block_tied_norm = parallel_block_tied_norm |
|
self.rotary_emb_fraction = rotary_emb_fraction |
|
self.tie_word_embeddings = tie_word_embeddings |
|
self.fused_dropout_add_ln = fused_dropout_add_ln |
|
self.fused_bias_fc = fused_bias_fc |
|
self.use_flash_attn = use_flash_attn |
|
self.use_xentropy = use_xentropy |
|
self.qkv_proj_bias = qkv_proj_bias |
|
self.rotary_emb_base = rotary_emb_base |
|
self.rotary_emb_scale_base = rotary_emb_scale_base |
|
self.rotary_emb_interleaved = rotary_emb_interleaved |
|
self.mlp_fc1_bias = mlp_fc1_bias |
|
self.mlp_fc2_bias = mlp_fc2_bias |
|
self.use_rms_norm = use_rms_norm |
|
self.causal = causal |
|
self.type_vocab_size = type_vocab_size |
|
self.dense_seq_output = dense_seq_output |
|
self.pad_vocab_size_multiple = pad_vocab_size_multiple |
|
self.rotary_scaling_factor = rotary_scaling_factor |
|
|
|
super().__init__(**kwargs) |