Serotina commited on
Commit
1d490b3
1 Parent(s): 478493a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.15 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:379db8bf3b3ebce695759c2ac2453757b6dd428cadfbb710c797f43f0bd91874
3
+ size 106831
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c08fb9cfe20>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c08fb9d4580>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694498946447100154,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANO51PviJB7yFIeQ+VAeWP+EMnz+rDdE+NO51PviJB7yFIeQ+NO51PviJB7yFIeQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQ26Vv1pbpz421N6+72jKP9ilaz+AQEk/6Mg1P9aQmT/JLtW+fjVVP3xS7L7q6KG9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA07nU++IkHvIUh5D7DEvo+1tJmu7XrxT5UB5Y/4QyfP6sN0T6LcF0/DkVYP9QdFz007nU++IkHvIUh5D7DEvo+1tJmu7XrxT407nU++IkHvIUh5D7DEvo+1tJmu7XrxT6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.24016649 -0.00827264 0.44556823]\n [ 1.1720986 1.2425805 0.4083074 ]\n [ 0.24016649 -0.00827264 0.44556823]\n [ 0.24016649 -0.00827264 0.44556823]]",
34
+ "desired_goal": "[[-1.1674274 0.32686883 -0.4352128 ]\n [ 1.5813273 0.9204993 0.78614044]\n [ 0.71009684 1.1997325 -0.41637257]\n [ 0.8328475 -0.4615668 -0.07905753]]",
35
+ "observation": "[[ 0.24016649 -0.00827264 0.44556823 0.4884244 -0.00352209 0.38656393]\n [ 1.1720986 1.2425805 0.4083074 0.8649985 0.8448037 0.03689368]\n [ 0.24016649 -0.00827264 0.44556823 0.4884244 -0.00352209 0.38656393]\n [ 0.24016649 -0.00827264 0.44556823 0.4884244 -0.00352209 0.38656393]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4LTSvXVG7z17Z5k+k2ncPYBp1b083QM+tdMKvh2CSz130qs8AxKkvbY94D3wXpk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.10288405 0.1168336 0.29961762]\n [ 0.10762324 -0.10420513 0.12877363]\n [-0.13557322 0.04968463 0.02097438]\n [-0.08011248 0.1094927 0.29955244]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9PBsQ/X5FiMAWyUSwOMAXSUR0CmbLFMRHwxdX2UKGgGR7/OROk+HJtBaAdLA2gIR0Cma+mHgxagdX2UKGgGR7+1K+SKWLP2aAdLAmgIR0CmbLnU+cH4dX2UKGgGR7/Q0E5hjOLSaAdLA2gIR0CmbHNRvWH2dX2UKGgGR7/QPcSGrS3LaAdLA2gIR0CmbDEHUtqYdX2UKGgGR7+4WgvlEJBxaAdLAmgIR0CmbDxAB1cMdX2UKGgGR7/SzvZyuIRAaAdLA2gIR0Cma/noX9BKdX2UKGgGR7/MfPHDJlreaAdLA2gIR0CmbMpNCZ4OdX2UKGgGR7/TJuEVWS2ZaAdLBGgIR0CmbIhwVCXydX2UKGgGR7++KrJbMX7+aAdLAmgIR0CmbNOGbkOqdX2UKGgGR7/OpfhMrVe8aAdLA2gIR0CmbEpwsGxEdX2UKGgGR7/S12aDwpfAaAdLA2gIR0CmbAfXPJJYdX2UKGgGR7/BDDTBqKxcaAdLAmgIR0CmbJGBvrGBdX2UKGgGR7+6BYmsvIwNaAdLAmgIR0CmbN9cry2AdX2UKGgGR7/EDklu3trsaAdLAmgIR0CmbFZmh/RWdX2UKGgGR7/GmvW6K+BZaAdLA2gIR0CmbKIAGSpzdX2UKGgGR7/YKQaJhvzfaAdLBGgIR0CmbBzQ/oq1dX2UKGgGR7/RZMcp9ZzQaAdLA2gIR0CmbO0knkT6dX2UKGgGR7/SccU/OdGzaAdLA2gIR0CmbGRfOUt7dX2UKGgGR7+3bsWweNkwaAdLAmgIR0CmbCWrOqvNdX2UKGgGR7+/UXpGFzuGaAdLAmgIR0CmbPjRMN+cdX2UKGgGR7+hiobXHzYmaAdLAWgIR0CmbP1sk6cRdX2UKGgGR7/XcUM5OrQxaAdLBGgIR0CmbLcHGCI2dX2UKGgGR7+7MTviLl3haAdLAmgIR0CmbDH0Cih4dX2UKGgGR7+mTNdJJ5E/aAdLAWgIR0CmbLvFWGRFdX2UKGgGR7/X2St/4IrwaAdLBGgIR0CmbHmeMAFQdX2UKGgGR7+o5/9YOlO5aAdLAWgIR0CmbDb+DOC5dX2UKGgGR7+zJ+2E0zj4aAdLAmgIR0CmbQdnK4hEdX2UKGgGR7/GEWZZ0SyuaAdLAmgIR0CmbIU2DQJHdX2UKGgGR7+0DDCP6sQvaAdLAmgIR0CmbENTLns+dX2UKGgGR7/O6IWP91loaAdLA2gIR0CmbNAz544ZdX2UKGgGR7+jKzRhMJyAaAdLAWgIR0CmbI31zySWdX2UKGgGR7/PBVuJk5IZaAdLA2gIR0CmbRtm+TNddX2UKGgGR7/FFsHjZL7GaAdLAmgIR0CmbE9q+JxedX2UKGgGR7+/3g1m8M/haAdLAmgIR0CmbNkf9xZMdX2UKGgGR7+FoxpL26ClaAdLAWgIR0CmbFTIvJzUdX2UKGgGR7/LdWyTpxFRaAdLA2gIR0CmbJ1R+BpYdX2UKGgGR7/ImUnogV45aAdLA2gIR0CmbSrVvuPWdX2UKGgGR7/Mro4dZJTVaAdLA2gIR0CmbOrKV6eHdX2UKGgGR7/Am8dxQzk7aAdLAmgIR0CmbKiEpRXPdX2UKGgGR7/CwZflZHNHaAdLA2gIR0CmbGYaYNRWdX2UKGgGR7+ndRBNVR1paAdLAWgIR0CmbK0iQkondX2UKGgGR7+Ui+tbLU1AaAdLAWgIR0CmbGqur6tUdX2UKGgGR7/WKNyYG+sYaAdLA2gIR0CmbTrksBhhdX2UKGgGR7+6U5dWyTpxaAdLAmgIR0CmbPRLCemOdX2UKGgGR7+yoaUA1ejVaAdLAmgIR0CmbHNNi6QOdX2UKGgGR7/BKmKqGUOeaAdLAmgIR0CmbUO27Wd3dX2UKGgGR7/RRJVbRne0aAdLA2gIR0CmbLrVFx4qdX2UKGgGR7+yPV/c32mIaAdLAmgIR0CmbH8AaNuMdX2UKGgGR7+58v24/eLvaAdLAmgIR0CmbU9DhLoPdX2UKGgGR7/W9JjDsMRZaAdLBGgIR0CmbQjG96C2dX2UKGgGR7/BXzUZvUBoaAdLAmgIR0CmbMalUIcBdX2UKGgGR7/DN/OMVDa5aAdLAmgIR0CmbIhDw6QvdX2UKGgGR7/Ai0OVgQYlaAdLAmgIR0CmbRG5MDfWdX2UKGgGR7/RqnWJ79hraAdLA2gIR0CmbNMyBTXKdX2UKGgGR7+0pMHryDqXaAdLAmgIR0CmbJCCz1K5dX2UKGgGR7/TD50r9VFQaAdLBGgIR0CmbWMaCL/CdX2UKGgGR7/PPa+N96ToaAdLA2gIR0CmbSGlyimEdX2UKGgGR7/DwVj7Q9idaAdLAmgIR0CmbN+ee4CqdX2UKGgGR7+zZxrBTGYKaAdLAmgIR0CmbJ0JF9a2dX2UKGgGR7/LT0g8r7O3aAdLA2gIR0CmbXGfoRqXdX2UKGgGR7/LwOOKfnOjaAdLA2gIR0CmbO0/OdGzdX2UKGgGR7/NwDNhVlwtaAdLA2gIR0CmbKqpT/ACdX2UKGgGR7+u56MR6F/QaAdLAmgIR0CmbX2j4593dX2UKGgGR7/Y9fkWAPNFaAdLBGgIR0CmbTcdgfEGdX2UKGgGR7/EqMFUyYXwaAdLA2gIR0CmbP0VrRBvdX2UKGgGR7/UrqMWGh24aAdLA2gIR0CmbLqh11W9dX2UKGgGR7/QwmE4//vOaAdLA2gIR0CmbUR1X/5tdX2UKGgGR7/UxHoX9BKMaAdLBGgIR0CmbZAX2ugZdX2UKGgGR7+9xtHhCMP0aAdLAmgIR0CmbVBvitJWdX2UKGgGR7/ECtA9mpVCaAdLAmgIR0CmbZuyE+PjdX2UKGgGR7/azundfsu4aAdLBGgIR0CmbRLVe8f3dX2UKGgGR7/aRiw0O3DvaAdLBGgIR0CmbNBS1maqdX2UKGgGR7/Jx/d69kBkaAdLA2gIR0CmbV9dVvMsdX2UKGgGR7+2fra/RE4OaAdLAmgIR0CmbNpjUd7wdX2UKGgGR7/ZsBhhH9WIaAdLBGgIR0CmbbHTiKixdX2UKGgGR7/g4ku6ErXlaAdLBGgIR0CmbSiobXHzdX2UKGgGR7+9ktmL9/BnaAdLAmgIR0CmbOYRNATqdX2UKGgGR7/cHi3ocJdCaAdLBGgIR0CmbXSBshxHdX2UKGgGR7/BiQT238XOaAdLAmgIR0CmbO9cry2AdX2UKGgGR7/QV1fVqesgaAdLA2gIR0CmbTcKG+K1dX2UKGgGR7/QwIt16mfoaAdLBGgIR0CmbcUBXCCSdX2UKGgGR7/FSBK+SKWLaAdLAmgIR0CmbPj4YaYNdX2UKGgGR7/P4QBgeA/caAdLA2gIR0CmbYWeg+QmdX2UKGgGR7/V078vVVghaAdLA2gIR0CmbUflhgE2dX2UKGgGR7+yZ2IO6NEPaAdLAmgIR0CmbQVCHARDdX2UKGgGR7/JKQq7ROUMaAdLA2gIR0CmbdWluWKNdX2UKGgGR7+8sBhhH9WIaAdLAmgIR0CmbY8IAwPAdX2UKGgGR7+TKs+3Ytg8aAdLAWgIR0CmbZPmHP/rdX2UKGgGR7/CYa5wwTM8aAdLAmgIR0CmbVHezlcRdX2UKGgGR7+WLDQ7cO9WaAdLAWgIR0CmbZjJ+2E1dX2UKGgGR7/MiCaqjrRjaAdLA2gIR0CmbRO3UhFFdX2UKGgGR7/FpblijL0SaAdLA2gIR0Cmbeaz3RG+dX2UKGgGR7/Hq+rU9ZA6aAdLAmgIR0CmbV3aakRBdX2UKGgGR7+kgntv4ubraAdLAWgIR0CmbWJaA4GVdX2UKGgGR7+vthNM495haAdLAmgIR0CmbR/qoqCpdX2UKGgGR7/Po+OfdyksaAdLA2gIR0CmbanOjZctdX2UKGgGR7/e0HhS9/SZaAdLBGgIR0CmbfmGdqcmdX2UKGgGR7/IcGTs6aLGaAdLA2gIR0CmbXBfrrxBdX2UKGgGR7/Uyu6mO2iMaAdLA2gIR0CmbS29lEqldWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37af7a784e936ec94a51185db8c04b95fbefcfe8cc504ad280c283717d151c0a
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c134492546a56380bfca014cd182eabc3e9f4af125e67f8887965577465bba00
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c08fb9cfe20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c08fb9d4580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694498946447100154, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANO51PviJB7yFIeQ+VAeWP+EMnz+rDdE+NO51PviJB7yFIeQ+NO51PviJB7yFIeQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQ26Vv1pbpz421N6+72jKP9ilaz+AQEk/6Mg1P9aQmT/JLtW+fjVVP3xS7L7q6KG9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA07nU++IkHvIUh5D7DEvo+1tJmu7XrxT5UB5Y/4QyfP6sN0T6LcF0/DkVYP9QdFz007nU++IkHvIUh5D7DEvo+1tJmu7XrxT407nU++IkHvIUh5D7DEvo+1tJmu7XrxT6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.24016649 -0.00827264 0.44556823]\n [ 1.1720986 1.2425805 0.4083074 ]\n [ 0.24016649 -0.00827264 0.44556823]\n [ 0.24016649 -0.00827264 0.44556823]]", "desired_goal": "[[-1.1674274 0.32686883 -0.4352128 ]\n [ 1.5813273 0.9204993 0.78614044]\n [ 0.71009684 1.1997325 -0.41637257]\n [ 0.8328475 -0.4615668 -0.07905753]]", "observation": "[[ 0.24016649 -0.00827264 0.44556823 0.4884244 -0.00352209 0.38656393]\n [ 1.1720986 1.2425805 0.4083074 0.8649985 0.8448037 0.03689368]\n [ 0.24016649 -0.00827264 0.44556823 0.4884244 -0.00352209 0.38656393]\n [ 0.24016649 -0.00827264 0.44556823 0.4884244 -0.00352209 0.38656393]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4LTSvXVG7z17Z5k+k2ncPYBp1b083QM+tdMKvh2CSz130qs8AxKkvbY94D3wXpk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10288405 0.1168336 0.29961762]\n [ 0.10762324 -0.10420513 0.12877363]\n [-0.13557322 0.04968463 0.02097438]\n [-0.08011248 0.1094927 0.29955244]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9PBsQ/X5FiMAWyUSwOMAXSUR0CmbLFMRHwxdX2UKGgGR7/OROk+HJtBaAdLA2gIR0Cma+mHgxagdX2UKGgGR7+1K+SKWLP2aAdLAmgIR0CmbLnU+cH4dX2UKGgGR7/Q0E5hjOLSaAdLA2gIR0CmbHNRvWH2dX2UKGgGR7/QPcSGrS3LaAdLA2gIR0CmbDEHUtqYdX2UKGgGR7+4WgvlEJBxaAdLAmgIR0CmbDxAB1cMdX2UKGgGR7/SzvZyuIRAaAdLA2gIR0Cma/noX9BKdX2UKGgGR7/MfPHDJlreaAdLA2gIR0CmbMpNCZ4OdX2UKGgGR7/TJuEVWS2ZaAdLBGgIR0CmbIhwVCXydX2UKGgGR7++KrJbMX7+aAdLAmgIR0CmbNOGbkOqdX2UKGgGR7/OpfhMrVe8aAdLA2gIR0CmbEpwsGxEdX2UKGgGR7/S12aDwpfAaAdLA2gIR0CmbAfXPJJYdX2UKGgGR7/BDDTBqKxcaAdLAmgIR0CmbJGBvrGBdX2UKGgGR7+6BYmsvIwNaAdLAmgIR0CmbN9cry2AdX2UKGgGR7/EDklu3trsaAdLAmgIR0CmbFZmh/RWdX2UKGgGR7/GmvW6K+BZaAdLA2gIR0CmbKIAGSpzdX2UKGgGR7/YKQaJhvzfaAdLBGgIR0CmbBzQ/oq1dX2UKGgGR7/RZMcp9ZzQaAdLA2gIR0CmbO0knkT6dX2UKGgGR7/SccU/OdGzaAdLA2gIR0CmbGRfOUt7dX2UKGgGR7+3bsWweNkwaAdLAmgIR0CmbCWrOqvNdX2UKGgGR7+/UXpGFzuGaAdLAmgIR0CmbPjRMN+cdX2UKGgGR7+hiobXHzYmaAdLAWgIR0CmbP1sk6cRdX2UKGgGR7/XcUM5OrQxaAdLBGgIR0CmbLcHGCI2dX2UKGgGR7+7MTviLl3haAdLAmgIR0CmbDH0Cih4dX2UKGgGR7+mTNdJJ5E/aAdLAWgIR0CmbLvFWGRFdX2UKGgGR7/X2St/4IrwaAdLBGgIR0CmbHmeMAFQdX2UKGgGR7+o5/9YOlO5aAdLAWgIR0CmbDb+DOC5dX2UKGgGR7+zJ+2E0zj4aAdLAmgIR0CmbQdnK4hEdX2UKGgGR7/GEWZZ0SyuaAdLAmgIR0CmbIU2DQJHdX2UKGgGR7+0DDCP6sQvaAdLAmgIR0CmbENTLns+dX2UKGgGR7/O6IWP91loaAdLA2gIR0CmbNAz544ZdX2UKGgGR7+jKzRhMJyAaAdLAWgIR0CmbI31zySWdX2UKGgGR7/PBVuJk5IZaAdLA2gIR0CmbRtm+TNddX2UKGgGR7/FFsHjZL7GaAdLAmgIR0CmbE9q+JxedX2UKGgGR7+/3g1m8M/haAdLAmgIR0CmbNkf9xZMdX2UKGgGR7+FoxpL26ClaAdLAWgIR0CmbFTIvJzUdX2UKGgGR7/LdWyTpxFRaAdLA2gIR0CmbJ1R+BpYdX2UKGgGR7/ImUnogV45aAdLA2gIR0CmbSrVvuPWdX2UKGgGR7/Mro4dZJTVaAdLA2gIR0CmbOrKV6eHdX2UKGgGR7/Am8dxQzk7aAdLAmgIR0CmbKiEpRXPdX2UKGgGR7/CwZflZHNHaAdLA2gIR0CmbGYaYNRWdX2UKGgGR7+ndRBNVR1paAdLAWgIR0CmbK0iQkondX2UKGgGR7+Ui+tbLU1AaAdLAWgIR0CmbGqur6tUdX2UKGgGR7/WKNyYG+sYaAdLA2gIR0CmbTrksBhhdX2UKGgGR7+6U5dWyTpxaAdLAmgIR0CmbPRLCemOdX2UKGgGR7+yoaUA1ejVaAdLAmgIR0CmbHNNi6QOdX2UKGgGR7/BKmKqGUOeaAdLAmgIR0CmbUO27Wd3dX2UKGgGR7/RRJVbRne0aAdLA2gIR0CmbLrVFx4qdX2UKGgGR7+yPV/c32mIaAdLAmgIR0CmbH8AaNuMdX2UKGgGR7+58v24/eLvaAdLAmgIR0CmbU9DhLoPdX2UKGgGR7/W9JjDsMRZaAdLBGgIR0CmbQjG96C2dX2UKGgGR7/BXzUZvUBoaAdLAmgIR0CmbMalUIcBdX2UKGgGR7/DN/OMVDa5aAdLAmgIR0CmbIhDw6QvdX2UKGgGR7/Ai0OVgQYlaAdLAmgIR0CmbRG5MDfWdX2UKGgGR7/RqnWJ79hraAdLA2gIR0CmbNMyBTXKdX2UKGgGR7+0pMHryDqXaAdLAmgIR0CmbJCCz1K5dX2UKGgGR7/TD50r9VFQaAdLBGgIR0CmbWMaCL/CdX2UKGgGR7/PPa+N96ToaAdLA2gIR0CmbSGlyimEdX2UKGgGR7/DwVj7Q9idaAdLAmgIR0CmbN+ee4CqdX2UKGgGR7+zZxrBTGYKaAdLAmgIR0CmbJ0JF9a2dX2UKGgGR7/LT0g8r7O3aAdLA2gIR0CmbXGfoRqXdX2UKGgGR7/LwOOKfnOjaAdLA2gIR0CmbO0/OdGzdX2UKGgGR7/NwDNhVlwtaAdLA2gIR0CmbKqpT/ACdX2UKGgGR7+u56MR6F/QaAdLAmgIR0CmbX2j4593dX2UKGgGR7/Y9fkWAPNFaAdLBGgIR0CmbTcdgfEGdX2UKGgGR7/EqMFUyYXwaAdLA2gIR0CmbP0VrRBvdX2UKGgGR7/UrqMWGh24aAdLA2gIR0CmbLqh11W9dX2UKGgGR7/QwmE4//vOaAdLA2gIR0CmbUR1X/5tdX2UKGgGR7/UxHoX9BKMaAdLBGgIR0CmbZAX2ugZdX2UKGgGR7+9xtHhCMP0aAdLAmgIR0CmbVBvitJWdX2UKGgGR7/ECtA9mpVCaAdLAmgIR0CmbZuyE+PjdX2UKGgGR7/azundfsu4aAdLBGgIR0CmbRLVe8f3dX2UKGgGR7/aRiw0O3DvaAdLBGgIR0CmbNBS1maqdX2UKGgGR7/Jx/d69kBkaAdLA2gIR0CmbV9dVvMsdX2UKGgGR7+2fra/RE4OaAdLAmgIR0CmbNpjUd7wdX2UKGgGR7/ZsBhhH9WIaAdLBGgIR0CmbbHTiKixdX2UKGgGR7/g4ku6ErXlaAdLBGgIR0CmbSiobXHzdX2UKGgGR7+9ktmL9/BnaAdLAmgIR0CmbOYRNATqdX2UKGgGR7/cHi3ocJdCaAdLBGgIR0CmbXSBshxHdX2UKGgGR7/BiQT238XOaAdLAmgIR0CmbO9cry2AdX2UKGgGR7/QV1fVqesgaAdLA2gIR0CmbTcKG+K1dX2UKGgGR7/QwIt16mfoaAdLBGgIR0CmbcUBXCCSdX2UKGgGR7/FSBK+SKWLaAdLAmgIR0CmbPj4YaYNdX2UKGgGR7/P4QBgeA/caAdLA2gIR0CmbYWeg+QmdX2UKGgGR7/V078vVVghaAdLA2gIR0CmbUflhgE2dX2UKGgGR7+yZ2IO6NEPaAdLAmgIR0CmbQVCHARDdX2UKGgGR7/JKQq7ROUMaAdLA2gIR0CmbdWluWKNdX2UKGgGR7+8sBhhH9WIaAdLAmgIR0CmbY8IAwPAdX2UKGgGR7+TKs+3Ytg8aAdLAWgIR0CmbZPmHP/rdX2UKGgGR7/CYa5wwTM8aAdLAmgIR0CmbVHezlcRdX2UKGgGR7+WLDQ7cO9WaAdLAWgIR0CmbZjJ+2E1dX2UKGgGR7/MiCaqjrRjaAdLA2gIR0CmbRO3UhFFdX2UKGgGR7/FpblijL0SaAdLA2gIR0Cmbeaz3RG+dX2UKGgGR7/Hq+rU9ZA6aAdLAmgIR0CmbV3aakRBdX2UKGgGR7+kgntv4ubraAdLAWgIR0CmbWJaA4GVdX2UKGgGR7+vthNM495haAdLAmgIR0CmbR/qoqCpdX2UKGgGR7/Po+OfdyksaAdLA2gIR0CmbanOjZctdX2UKGgGR7/e0HhS9/SZaAdLBGgIR0CmbfmGdqcmdX2UKGgGR7/IcGTs6aLGaAdLA2gIR0CmbXBfrrxBdX2UKGgGR7/Uyu6mO2iMaAdLA2gIR0CmbS29lEqldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (663 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.1478596563450992, "std_reward": 0.10848679122238937, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-12T06:58:19.911039"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a480a3e44d64d4aed732802f09f2dfde2e42dccea43ce6b5b048c103b17b14b
3
+ size 2623