Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.39 +/- 0.49
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c900a89530c12b53ce49ef4da4226cb573144cab948127d31ea23f82188376d3
|
3 |
+
size 108028
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcce8081550>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcce8083500>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1679242294833981415,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfyXWPq9tl7y1oBQ/fyXWPq9tl7y1oBQ/fyXWPq9tl7y1oBQ/fyXWPq9tl7y1oBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbw3Lv3ijdT+/Tjm/X+OIv4TDgT8ZrKa/p6rLvx3bjD+ffZk/bsi/P1WGND62iUG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB/JdY+r22XvLWgFD9nOiY8AOevuzXC+Dt/JdY+r22XvLWgFD9nOiY8AOevuzXC+Dt/JdY+r22XvLWgFD9nOiY8AOevuzXC+Dt/JdY+r22XvLWgFD9nOiY8AOevuzXC+DuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.41825482 -0.01848492 0.5805772 ]\n [ 0.41825482 -0.01848492 0.5805772 ]\n [ 0.41825482 -0.01848492 0.5805772 ]\n [ 0.41825482 -0.01848492 0.5805772 ]]",
|
60 |
+
"desired_goal": "[[-1.5863475 0.9595256 -0.7238578 ]\n [-1.0694388 1.0137792 -1.302127 ]\n [-1.5911454 1.1004368 1.1991462 ]\n [ 1.4983041 0.17629369 -0.75600755]]",
|
61 |
+
"observation": "[[ 0.41825482 -0.01848492 0.5805772 0.01014576 -0.00536811 0.00759151]\n [ 0.41825482 -0.01848492 0.5805772 0.01014576 -0.00536811 0.00759151]\n [ 0.41825482 -0.01848492 0.5805772 0.01014576 -0.00536811 0.00759151]\n [ 0.41825482 -0.01848492 0.5805772 0.01014576 -0.00536811 0.00759151]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWAGnvQANgb2MIUE+G4JFPTSWFj1M/JU+yU2UPV6OFT6Ryfk9K236OtFQ/b33mwQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.08154553 -0.06301308 0.18860453]\n [ 0.04821978 0.03676434 0.2929405 ]\n [ 0.07241399 0.1460509 0.12196649]\n [ 0.0019106 -0.1236893 0.12950121]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqz3shQL28r+UhpRSlIwBbJRLMowBdJRHQKjq/6VMVUN1fZQoaAZoCWgPQwjNrRBWYwn/v5SGlFKUaBVLMmgWR0Co6qegte2NdX2UKGgGaAloD0MIVDvD1Ja697+UhpRSlGgVSzJoFkdAqOpSjDbaiHV9lChoBmgJaA9DCGA7GLFPgOu/lIaUUpRoFUsyaBZHQKjp9Q53kgh1fZQoaAZoCWgPQwhTy9b6IqHbv5SGlFKUaBVLMmgWR0Co7E+7UXpGdX2UKGgGaAloD0MIjBTKwtfX+7+UhpRSlGgVSzJoFkdAqOv3kkrwv3V9lChoBmgJaA9DCJdV2AxwwfG/lIaUUpRoFUsyaBZHQKjrokfs/pt1fZQoaAZoCWgPQwgZ/tMNFLj/v5SGlFKUaBVLMmgWR0Co60S/j81odX2UKGgGaAloD0MITDeJQWDlAcCUhpRSlGgVSzJoFkdAqO17RWtEHHV9lChoBmgJaA9DCFHAdjBiH/q/lIaUUpRoFUsyaBZHQKjtIj0th/l1fZQoaAZoCWgPQwhGXAAapQv8v5SGlFKUaBVLMmgWR0Co7Mv1ct5EdX2UKGgGaAloD0MIRWKCGr5lBMCUhpRSlGgVSzJoFkdAqOxtiWmgrnV9lChoBmgJaA9DCPchb7n6cfq/lIaUUpRoFUsyaBZHQKjui7Xg9/11fZQoaAZoCWgPQwhqErwhjWoBwJSGlFKUaBVLMmgWR0Co7jJzDGcXdX2UKGgGaAloD0MIUMJM279y8r+UhpRSlGgVSzJoFkdAqO3cOEug6HV9lChoBmgJaA9DCNZUFoVdVAbAlIaUUpRoFUsyaBZHQKjtfYaHbh51fZQoaAZoCWgPQwgEcR5OYPr8v5SGlFKUaBVLMmgWR0Co76HxSYPYdX2UKGgGaAloD0MIOuenOA488b+UhpRSlGgVSzJoFkdAqO9I64lQdnV9lChoBmgJaA9DCP6d7dEbbvu/lIaUUpRoFUsyaBZHQKju8qbSZ0F1fZQoaAZoCWgPQwhqhel7DcEEwJSGlFKUaBVLMmgWR0Co7pQtz0YkdX2UKGgGaAloD0MIebDFbp8V/b+UhpRSlGgVSzJoFkdAqPDADDCP63V9lChoBmgJaA9DCAA3ixcLg/2/lIaUUpRoFUsyaBZHQKjwZvOyE+R1fZQoaAZoCWgPQwia0vpbArD1v5SGlFKUaBVLMmgWR0Co8BCcwxnGdX2UKGgGaAloD0MIYAK37uYp9b+UhpRSlGgVSzJoFkdAqO+yOJcgQ3V9lChoBmgJaA9DCOgyNQneEPa/lIaUUpRoFUsyaBZHQKjx038XN1R1fZQoaAZoCWgPQwi0Hykiw4oCwJSGlFKUaBVLMmgWR0Co8Xp5u63BdX2UKGgGaAloD0MIxxNBnIeT47+UhpRSlGgVSzJoFkdAqPEkDuBtlHV9lChoBmgJaA9DCOavkLkyqAPAlIaUUpRoFUsyaBZHQKjwxWSU1Q91fZQoaAZoCWgPQwiCOXr83qbgv5SGlFKUaBVLMmgWR0Co8vcer+5wdX2UKGgGaAloD0MIE7cKYqCr8L+UhpRSlGgVSzJoFkdAqPKeTHKfWnV9lChoBmgJaA9DCBzPZ0C9GfS/lIaUUpRoFUsyaBZHQKjyR/Nqxkd1fZQoaAZoCWgPQwhTQrCqXn7uv5SGlFKUaBVLMmgWR0Co8elyR0U5dX2UKGgGaAloD0MI3IMQkC+h67+UhpRSlGgVSzJoFkdAqPQL1ZkkKXV9lChoBmgJaA9DCAaFQZlGU/W/lIaUUpRoFUsyaBZHQKjzssoUi6h1fZQoaAZoCWgPQwhJLZRMTm3tv5SGlFKUaBVLMmgWR0Co81xvWH1wdX2UKGgGaAloD0MIuAN1yqM7AsCUhpRSlGgVSzJoFkdAqPL9+I/JNnV9lChoBmgJaA9DCKErEaj+IQDAlIaUUpRoFUsyaBZHQKj1I1FYuCh1fZQoaAZoCWgPQwgwE0VI3c7dv5SGlFKUaBVLMmgWR0Co9MowudwvdX2UKGgGaAloD0MIXATG+gZGAsCUhpRSlGgVSzJoFkdAqPRz1yvLYHV9lChoBmgJaA9DCDm0yHa+n9+/lIaUUpRoFUsyaBZHQKj0FZKWcBl1fZQoaAZoCWgPQwh7EW3H1N0IwJSGlFKUaBVLMmgWR0Co9i32mHgxdX2UKGgGaAloD0MIS+SCM/g7AcCUhpRSlGgVSzJoFkdAqPXUw8GLUHV9lChoBmgJaA9DCMiUD0HVSADAlIaUUpRoFUsyaBZHQKj1fnpSrHV1fZQoaAZoCWgPQwhYycfuAiX1v5SGlFKUaBVLMmgWR0Co9SACW/rTdX2UKGgGaAloD0MI1h9hGLBk9r+UhpRSlGgVSzJoFkdAqPdJ7CzkZXV9lChoBmgJaA9DCPIIbqRskfu/lIaUUpRoFUsyaBZHQKj28OR1X/51fZQoaAZoCWgPQwh5PZgUHx/1v5SGlFKUaBVLMmgWR0Co9pqgIyCWdX2UKGgGaAloD0MIjL0XX7RH5L+UhpRSlGgVSzJoFkdAqPY8ImgJ1XV9lChoBmgJaA9DCOUoQBTMGPa/lIaUUpRoFUsyaBZHQKj4Y6Lfk3l1fZQoaAZoCWgPQwivtfepKpQAwJSGlFKUaBVLMmgWR0Co+AqYRdyDdX2UKGgGaAloD0MI3/yGiQbp+b+UhpRSlGgVSzJoFkdAqPe0PrfLtHV9lChoBmgJaA9DCAd8fhghPP+/lIaUUpRoFUsyaBZHQKj3Vb5dnkF1fZQoaAZoCWgPQwgZcJaS5ST3v5SGlFKUaBVLMmgWR0Co+YAB91EFdX2UKGgGaAloD0MI7dKGw9JA/r+UhpRSlGgVSzJoFkdAqPkm6unuRnV9lChoBmgJaA9DCPFHUWfuAQHAlIaUUpRoFUsyaBZHQKj40HsTnJV1fZQoaAZoCWgPQwgSh2wgXSwEwJSGlFKUaBVLMmgWR0Co+HHEl3QldX2UKGgGaAloD0MIXYqryr5LBMCUhpRSlGgVSzJoFkdAqPqP5rP+oHV9lChoBmgJaA9DCIzXvKqzmv+/lIaUUpRoFUsyaBZHQKj6NtMwlB11fZQoaAZoCWgPQwjPaKuSyL7yv5SGlFKUaBVLMmgWR0Co+eC66J66dX2UKGgGaAloD0MIQIUjSKVY+b+UhpRSlGgVSzJoFkdAqPmCY3Ns33V9lChoBmgJaA9DCJUp5iDoyAHAlIaUUpRoFUsyaBZHQKj7w3pfQa91fZQoaAZoCWgPQwjvyi4YXPPsv5SGlFKUaBVLMmgWR0Co+2p3X7LudX2UKGgGaAloD0MI9DRgkPRp97+UhpRSlGgVSzJoFkdAqPsUM5OrQ3V9lChoBmgJaA9DCM0jfzDwfADAlIaUUpRoFUsyaBZHQKj6tdYW+Gp1fZQoaAZoCWgPQwgzNJ4I4jztv5SGlFKUaBVLMmgWR0Co/PF7MPjGdX2UKGgGaAloD0MIDThLyXKS7b+UhpRSlGgVSzJoFkdAqPyYhje9BnV9lChoBmgJaA9DCAagUbr0L+2/lIaUUpRoFUsyaBZHQKj8QjASFoN1fZQoaAZoCWgPQwhq+uyA6wrsv5SGlFKUaBVLMmgWR0Co++OEmICVdX2UKGgGaAloD0MIhGIraFri/L+UhpRSlGgVSzJoFkdAqP4V7jT8YXV9lChoBmgJaA9DCMDtCRLb3ey/lIaUUpRoFUsyaBZHQKj9vPJJXhh1fZQoaAZoCWgPQwh7wac5eZHlv5SGlFKUaBVLMmgWR0Co/WarvLHNdX2UKGgGaAloD0MICYz1DUyOAsCUhpRSlGgVSzJoFkdAqP0IJmdy1nV9lChoBmgJaA9DCBqJ0Ag2Luy/lIaUUpRoFUsyaBZHQKj/Q+4b0e51fZQoaAZoCWgPQwi3uMZnsn/uv5SGlFKUaBVLMmgWR0Co/u0G3WnTdX2UKGgGaAloD0MIrws/OJ968b+UhpRSlGgVSzJoFkdAqP6XyXlbNnV9lChoBmgJaA9DCFQ57Sk5J++/lIaUUpRoFUsyaBZHQKj+Orjo6jp1fZQoaAZoCWgPQwjkLVc/Nsnzv5SGlFKUaBVLMmgWR0CpAUGfoRqXdX2UKGgGaAloD0MIutv10hSB67+UhpRSlGgVSzJoFkdAqQDpUipvP3V9lChoBmgJaA9DCLOyfchbbvW/lIaUUpRoFUsyaBZHQKkAlNRFZxJ1fZQoaAZoCWgPQwiz7Elgcw4BwJSGlFKUaBVLMmgWR0CpADck2P1ddX2UKGgGaAloD0MI4qsdxTlq8b+UhpRSlGgVSzJoFkdAqQMqa7VawHV9lChoBmgJaA9DCD+LpUi+Eve/lIaUUpRoFUsyaBZHQKkC0pjMFEB1fZQoaAZoCWgPQwirQC0GD9P7v5SGlFKUaBVLMmgWR0CpAn0hePaMdX2UKGgGaAloD0MIe8GnOXkR9L+UhpRSlGgVSzJoFkdAqQIfjCHh0nV9lChoBmgJaA9DCBCSBUzglvu/lIaUUpRoFUsyaBZHQKkFI4MnZ011fZQoaAZoCWgPQwiBQ6hSswftv5SGlFKUaBVLMmgWR0CpBMuVgQYldX2UKGgGaAloD0MI5GVNLPA1AsCUhpRSlGgVSzJoFkdAqQR2Xu3MIXV9lChoBmgJaA9DCBcq/1pe+fi/lIaUUpRoFUsyaBZHQKkEGNsnAqN1fZQoaAZoCWgPQwiV2LW93ZLsv5SGlFKUaBVLMmgWR0CpBxNUwSJ1dX2UKGgGaAloD0MIZcQFoFF6/L+UhpRSlGgVSzJoFkdAqQa7e2uxKXV9lChoBmgJaA9DCMmRzsDICwfAlIaUUpRoFUsyaBZHQKkGZcFhXsB1fZQoaAZoCWgPQwimKQKc3kX5v5SGlFKUaBVLMmgWR0CpBgiONo8IdX2UKGgGaAloD0MIrI+HvrtV97+UhpRSlGgVSzJoFkdAqQj5K3/gi3V9lChoBmgJaA9DCBvV6UDW0/e/lIaUUpRoFUsyaBZHQKkIoVJtix51fZQoaAZoCWgPQwjWqIdodAcAwJSGlFKUaBVLMmgWR0CpCEvcrRShdX2UKGgGaAloD0MIiGnf3F/9+L+UhpRSlGgVSzJoFkdAqQfum1pj+nV9lChoBmgJaA9DCMvXZfhPVwPAlIaUUpRoFUsyaBZHQKkKrizcAR11fZQoaAZoCWgPQwj7HvXXK4wCwJSGlFKUaBVLMmgWR0CpClTyz5XVdX2UKGgGaAloD0MI9zk+WpyRAcCUhpRSlGgVSzJoFkdAqQn+UhV2inV9lChoBmgJaA9DCAnh0cYRK/O/lIaUUpRoFUsyaBZHQKkJn+m3vx91ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d74914a4bc0cce902bcdb8404a8fa427be67b14f25d6c552c6df96d2cfb84f6
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:200f3187a0b2ab17957115b41d2c3405f635363b586f85225e7fad6d0800af6c
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcce8081550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcce8083500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679242294833981415, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfyXWPq9tl7y1oBQ/fyXWPq9tl7y1oBQ/fyXWPq9tl7y1oBQ/fyXWPq9tl7y1oBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbw3Lv3ijdT+/Tjm/X+OIv4TDgT8ZrKa/p6rLvx3bjD+ffZk/bsi/P1WGND62iUG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB/JdY+r22XvLWgFD9nOiY8AOevuzXC+Dt/JdY+r22XvLWgFD9nOiY8AOevuzXC+Dt/JdY+r22XvLWgFD9nOiY8AOevuzXC+Dt/JdY+r22XvLWgFD9nOiY8AOevuzXC+DuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41825482 -0.01848492 0.5805772 ]\n [ 0.41825482 -0.01848492 0.5805772 ]\n [ 0.41825482 -0.01848492 0.5805772 ]\n [ 0.41825482 -0.01848492 0.5805772 ]]", "desired_goal": "[[-1.5863475 0.9595256 -0.7238578 ]\n [-1.0694388 1.0137792 -1.302127 ]\n [-1.5911454 1.1004368 1.1991462 ]\n [ 1.4983041 0.17629369 -0.75600755]]", "observation": "[[ 0.41825482 -0.01848492 0.5805772 0.01014576 -0.00536811 0.00759151]\n [ 0.41825482 -0.01848492 0.5805772 0.01014576 -0.00536811 0.00759151]\n [ 0.41825482 -0.01848492 0.5805772 0.01014576 -0.00536811 0.00759151]\n [ 0.41825482 -0.01848492 0.5805772 0.01014576 -0.00536811 0.00759151]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWAGnvQANgb2MIUE+G4JFPTSWFj1M/JU+yU2UPV6OFT6Ryfk9K236OtFQ/b33mwQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08154553 -0.06301308 0.18860453]\n [ 0.04821978 0.03676434 0.2929405 ]\n [ 0.07241399 0.1460509 0.12196649]\n [ 0.0019106 -0.1236893 0.12950121]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqz3shQL28r+UhpRSlIwBbJRLMowBdJRHQKjq/6VMVUN1fZQoaAZoCWgPQwjNrRBWYwn/v5SGlFKUaBVLMmgWR0Co6qegte2NdX2UKGgGaAloD0MIVDvD1Ja697+UhpRSlGgVSzJoFkdAqOpSjDbaiHV9lChoBmgJaA9DCGA7GLFPgOu/lIaUUpRoFUsyaBZHQKjp9Q53kgh1fZQoaAZoCWgPQwhTy9b6IqHbv5SGlFKUaBVLMmgWR0Co7E+7UXpGdX2UKGgGaAloD0MIjBTKwtfX+7+UhpRSlGgVSzJoFkdAqOv3kkrwv3V9lChoBmgJaA9DCJdV2AxwwfG/lIaUUpRoFUsyaBZHQKjrokfs/pt1fZQoaAZoCWgPQwgZ/tMNFLj/v5SGlFKUaBVLMmgWR0Co60S/j81odX2UKGgGaAloD0MITDeJQWDlAcCUhpRSlGgVSzJoFkdAqO17RWtEHHV9lChoBmgJaA9DCFHAdjBiH/q/lIaUUpRoFUsyaBZHQKjtIj0th/l1fZQoaAZoCWgPQwhGXAAapQv8v5SGlFKUaBVLMmgWR0Co7Mv1ct5EdX2UKGgGaAloD0MIRWKCGr5lBMCUhpRSlGgVSzJoFkdAqOxtiWmgrnV9lChoBmgJaA9DCPchb7n6cfq/lIaUUpRoFUsyaBZHQKjui7Xg9/11fZQoaAZoCWgPQwhqErwhjWoBwJSGlFKUaBVLMmgWR0Co7jJzDGcXdX2UKGgGaAloD0MIUMJM279y8r+UhpRSlGgVSzJoFkdAqO3cOEug6HV9lChoBmgJaA9DCNZUFoVdVAbAlIaUUpRoFUsyaBZHQKjtfYaHbh51fZQoaAZoCWgPQwgEcR5OYPr8v5SGlFKUaBVLMmgWR0Co76HxSYPYdX2UKGgGaAloD0MIOuenOA488b+UhpRSlGgVSzJoFkdAqO9I64lQdnV9lChoBmgJaA9DCP6d7dEbbvu/lIaUUpRoFUsyaBZHQKju8qbSZ0F1fZQoaAZoCWgPQwhqhel7DcEEwJSGlFKUaBVLMmgWR0Co7pQtz0YkdX2UKGgGaAloD0MIebDFbp8V/b+UhpRSlGgVSzJoFkdAqPDADDCP63V9lChoBmgJaA9DCAA3ixcLg/2/lIaUUpRoFUsyaBZHQKjwZvOyE+R1fZQoaAZoCWgPQwia0vpbArD1v5SGlFKUaBVLMmgWR0Co8BCcwxnGdX2UKGgGaAloD0MIYAK37uYp9b+UhpRSlGgVSzJoFkdAqO+yOJcgQ3V9lChoBmgJaA9DCOgyNQneEPa/lIaUUpRoFUsyaBZHQKjx038XN1R1fZQoaAZoCWgPQwi0Hykiw4oCwJSGlFKUaBVLMmgWR0Co8Xp5u63BdX2UKGgGaAloD0MIxxNBnIeT47+UhpRSlGgVSzJoFkdAqPEkDuBtlHV9lChoBmgJaA9DCOavkLkyqAPAlIaUUpRoFUsyaBZHQKjwxWSU1Q91fZQoaAZoCWgPQwiCOXr83qbgv5SGlFKUaBVLMmgWR0Co8vcer+5wdX2UKGgGaAloD0MIE7cKYqCr8L+UhpRSlGgVSzJoFkdAqPKeTHKfWnV9lChoBmgJaA9DCBzPZ0C9GfS/lIaUUpRoFUsyaBZHQKjyR/Nqxkd1fZQoaAZoCWgPQwhTQrCqXn7uv5SGlFKUaBVLMmgWR0Co8elyR0U5dX2UKGgGaAloD0MI3IMQkC+h67+UhpRSlGgVSzJoFkdAqPQL1ZkkKXV9lChoBmgJaA9DCAaFQZlGU/W/lIaUUpRoFUsyaBZHQKjzssoUi6h1fZQoaAZoCWgPQwhJLZRMTm3tv5SGlFKUaBVLMmgWR0Co81xvWH1wdX2UKGgGaAloD0MIuAN1yqM7AsCUhpRSlGgVSzJoFkdAqPL9+I/JNnV9lChoBmgJaA9DCKErEaj+IQDAlIaUUpRoFUsyaBZHQKj1I1FYuCh1fZQoaAZoCWgPQwgwE0VI3c7dv5SGlFKUaBVLMmgWR0Co9MowudwvdX2UKGgGaAloD0MIXATG+gZGAsCUhpRSlGgVSzJoFkdAqPRz1yvLYHV9lChoBmgJaA9DCDm0yHa+n9+/lIaUUpRoFUsyaBZHQKj0FZKWcBl1fZQoaAZoCWgPQwh7EW3H1N0IwJSGlFKUaBVLMmgWR0Co9i32mHgxdX2UKGgGaAloD0MIS+SCM/g7AcCUhpRSlGgVSzJoFkdAqPXUw8GLUHV9lChoBmgJaA9DCMiUD0HVSADAlIaUUpRoFUsyaBZHQKj1fnpSrHV1fZQoaAZoCWgPQwhYycfuAiX1v5SGlFKUaBVLMmgWR0Co9SACW/rTdX2UKGgGaAloD0MI1h9hGLBk9r+UhpRSlGgVSzJoFkdAqPdJ7CzkZXV9lChoBmgJaA9DCPIIbqRskfu/lIaUUpRoFUsyaBZHQKj28OR1X/51fZQoaAZoCWgPQwh5PZgUHx/1v5SGlFKUaBVLMmgWR0Co9pqgIyCWdX2UKGgGaAloD0MIjL0XX7RH5L+UhpRSlGgVSzJoFkdAqPY8ImgJ1XV9lChoBmgJaA9DCOUoQBTMGPa/lIaUUpRoFUsyaBZHQKj4Y6Lfk3l1fZQoaAZoCWgPQwivtfepKpQAwJSGlFKUaBVLMmgWR0Co+AqYRdyDdX2UKGgGaAloD0MI3/yGiQbp+b+UhpRSlGgVSzJoFkdAqPe0PrfLtHV9lChoBmgJaA9DCAd8fhghPP+/lIaUUpRoFUsyaBZHQKj3Vb5dnkF1fZQoaAZoCWgPQwgZcJaS5ST3v5SGlFKUaBVLMmgWR0Co+YAB91EFdX2UKGgGaAloD0MI7dKGw9JA/r+UhpRSlGgVSzJoFkdAqPkm6unuRnV9lChoBmgJaA9DCPFHUWfuAQHAlIaUUpRoFUsyaBZHQKj40HsTnJV1fZQoaAZoCWgPQwgSh2wgXSwEwJSGlFKUaBVLMmgWR0Co+HHEl3QldX2UKGgGaAloD0MIXYqryr5LBMCUhpRSlGgVSzJoFkdAqPqP5rP+oHV9lChoBmgJaA9DCIzXvKqzmv+/lIaUUpRoFUsyaBZHQKj6NtMwlB11fZQoaAZoCWgPQwjPaKuSyL7yv5SGlFKUaBVLMmgWR0Co+eC66J66dX2UKGgGaAloD0MIQIUjSKVY+b+UhpRSlGgVSzJoFkdAqPmCY3Ns33V9lChoBmgJaA9DCJUp5iDoyAHAlIaUUpRoFUsyaBZHQKj7w3pfQa91fZQoaAZoCWgPQwjvyi4YXPPsv5SGlFKUaBVLMmgWR0Co+2p3X7LudX2UKGgGaAloD0MI9DRgkPRp97+UhpRSlGgVSzJoFkdAqPsUM5OrQ3V9lChoBmgJaA9DCM0jfzDwfADAlIaUUpRoFUsyaBZHQKj6tdYW+Gp1fZQoaAZoCWgPQwgzNJ4I4jztv5SGlFKUaBVLMmgWR0Co/PF7MPjGdX2UKGgGaAloD0MIDThLyXKS7b+UhpRSlGgVSzJoFkdAqPyYhje9BnV9lChoBmgJaA9DCAagUbr0L+2/lIaUUpRoFUsyaBZHQKj8QjASFoN1fZQoaAZoCWgPQwhq+uyA6wrsv5SGlFKUaBVLMmgWR0Co++OEmICVdX2UKGgGaAloD0MIhGIraFri/L+UhpRSlGgVSzJoFkdAqP4V7jT8YXV9lChoBmgJaA9DCMDtCRLb3ey/lIaUUpRoFUsyaBZHQKj9vPJJXhh1fZQoaAZoCWgPQwh7wac5eZHlv5SGlFKUaBVLMmgWR0Co/WarvLHNdX2UKGgGaAloD0MICYz1DUyOAsCUhpRSlGgVSzJoFkdAqP0IJmdy1nV9lChoBmgJaA9DCBqJ0Ag2Luy/lIaUUpRoFUsyaBZHQKj/Q+4b0e51fZQoaAZoCWgPQwi3uMZnsn/uv5SGlFKUaBVLMmgWR0Co/u0G3WnTdX2UKGgGaAloD0MIrws/OJ968b+UhpRSlGgVSzJoFkdAqP6XyXlbNnV9lChoBmgJaA9DCFQ57Sk5J++/lIaUUpRoFUsyaBZHQKj+Orjo6jp1fZQoaAZoCWgPQwjkLVc/Nsnzv5SGlFKUaBVLMmgWR0CpAUGfoRqXdX2UKGgGaAloD0MIutv10hSB67+UhpRSlGgVSzJoFkdAqQDpUipvP3V9lChoBmgJaA9DCLOyfchbbvW/lIaUUpRoFUsyaBZHQKkAlNRFZxJ1fZQoaAZoCWgPQwiz7Elgcw4BwJSGlFKUaBVLMmgWR0CpADck2P1ddX2UKGgGaAloD0MI4qsdxTlq8b+UhpRSlGgVSzJoFkdAqQMqa7VawHV9lChoBmgJaA9DCD+LpUi+Eve/lIaUUpRoFUsyaBZHQKkC0pjMFEB1fZQoaAZoCWgPQwirQC0GD9P7v5SGlFKUaBVLMmgWR0CpAn0hePaMdX2UKGgGaAloD0MIe8GnOXkR9L+UhpRSlGgVSzJoFkdAqQIfjCHh0nV9lChoBmgJaA9DCBCSBUzglvu/lIaUUpRoFUsyaBZHQKkFI4MnZ011fZQoaAZoCWgPQwiBQ6hSswftv5SGlFKUaBVLMmgWR0CpBMuVgQYldX2UKGgGaAloD0MI5GVNLPA1AsCUhpRSlGgVSzJoFkdAqQR2Xu3MIXV9lChoBmgJaA9DCBcq/1pe+fi/lIaUUpRoFUsyaBZHQKkEGNsnAqN1fZQoaAZoCWgPQwiV2LW93ZLsv5SGlFKUaBVLMmgWR0CpBxNUwSJ1dX2UKGgGaAloD0MIZcQFoFF6/L+UhpRSlGgVSzJoFkdAqQa7e2uxKXV9lChoBmgJaA9DCMmRzsDICwfAlIaUUpRoFUsyaBZHQKkGZcFhXsB1fZQoaAZoCWgPQwimKQKc3kX5v5SGlFKUaBVLMmgWR0CpBgiONo8IdX2UKGgGaAloD0MIrI+HvrtV97+UhpRSlGgVSzJoFkdAqQj5K3/gi3V9lChoBmgJaA9DCBvV6UDW0/e/lIaUUpRoFUsyaBZHQKkIoVJtix51fZQoaAZoCWgPQwjWqIdodAcAwJSGlFKUaBVLMmgWR0CpCEvcrRShdX2UKGgGaAloD0MIiGnf3F/9+L+UhpRSlGgVSzJoFkdAqQfum1pj+nV9lChoBmgJaA9DCMvXZfhPVwPAlIaUUpRoFUsyaBZHQKkKrizcAR11fZQoaAZoCWgPQwj7HvXXK4wCwJSGlFKUaBVLMmgWR0CpClTyz5XVdX2UKGgGaAloD0MI9zk+WpyRAcCUhpRSlGgVSzJoFkdAqQn+UhV2inV9lChoBmgJaA9DCAnh0cYRK/O/lIaUUpRoFUsyaBZHQKkJn+m3vx91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (649 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.3890154792694376, "std_reward": 0.491249870866243, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T17:05:03.776938"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e1d031e61b75ad9efb962ed9d160a6aad71ff319e29cfd91d9df1d1eca32593
|
3 |
+
size 3056
|