SenaSoft commited on
Commit
f0f8358
·
verified ·
1 Parent(s): e94cf83

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -173
README.md CHANGED
@@ -1,199 +1,89 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
- ## Model Details
 
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
+ base_model: LeoCordoba/beto2beto-mlsum
3
+ library_name: peft
4
+ tags:
5
+ - summarization
6
+ - spanish
7
+ - lora
8
+ - transformers
9
+ - seq2seq
10
+ - beto
11
  ---
12
 
13
+ # SenaSoft/chdv-summarization
14
 
15
+ Modelo de resumen automático de textos en español fine-tuneado a partir de **LeoCordoba/beto2beto-mlsum**, utilizando **LoRA** con la librería **PEFT**.
16
 
17
+ ## 🧠 Descripción del modelo
18
 
19
+ Este modelo genera resúmenes en español a partir de textos largos, usando una arquitectura **Encoder-Decoder basada en BETO** (BERT español adaptado a tareas de resumen).
20
+ Fue ajustado con un adaptador **LoRA (Low-Rank Adaptation)** para reducir el costo computacional y acelerar el entrenamiento sin sacrificar desempeño.
21
 
22
+ - **Autores:** Christopher Aponte y David Navarro
23
+ - **Lenguaje:** Español
24
+ - **Tarea:** Resumen de texto (summarization)
25
+ - **Modelo base:** [LeoCordoba/beto2beto-mlsum](https://huggingface.co/LeoCordoba/beto2beto-mlsum)
26
+ - **Framework:** 🤗 Transformers + PEFT
27
+ - **Dataset:** [csebuetnlp/xlsum (configuración: spanish)](https://huggingface.co/datasets/csebuetnlp/xlsum)
28
 
29
+ ## 🚀 Ejemplo de uso
30
 
31
+ ```python
32
+ from transformers import pipeline
33
 
34
+ # Carga del pipeline de resumen
35
+ resumidor = pipeline("summarization", model="SenaSoft/chdv-summarization")
36
 
37
+ texto = """
38
+ El aprendizaje automático es una rama fundamental de la inteligencia artificial que se centra en el desarrollo de algoritmos y modelos capaces de aprender a partir de datos. En lugar de seguir instrucciones programadas de forma explícita, estas máquinas identifican patrones, relaciones y tendencias dentro de grandes volúmenes de información, lo que les permite mejorar su rendimiento y tomar decisiones cada vez más precisas con el tiempo.
 
 
 
 
 
39
 
40
+ Esta disciplina se aplica en una amplia variedad de campos. En la visión por computadora, por ejemplo, permite que los sistemas reconozcan rostros, objetos y escenas dentro de imágenes o videos. En el procesamiento de lenguaje natural, posibilita que las máquinas comprendan y generen texto o voz de manera coherente, facilitando herramientas como traductores automáticos, chatbots o asistentes virtuales. También se utiliza en la predicción de comportamientos, donde modelos entrenados con datos históricos pueden anticipar compras de usuarios, detectar fraudes financieros o incluso prever fallas en sistemas industriales.
41
 
42
+ El impacto del aprendizaje automático es tan amplio que se ha convertido en una de las tecnologías más influyentes del siglo XXI, impulsando la automatización, la personalización de servicios y el análisis inteligente de datos en prácticamente todos los sectores.
43
+ """
44
 
45
+ # Generar resumen
46
+ resumen = resumidor(texto, max_length=100, min_length=30, do_sample=False)
47
+ print(resumen[0]["summary_text"])
48
+ ```
49
 
50
+ Tiempo de respuesta aproximado: **1.1 segundos** en GPU T4.
51
 
52
+ ## ⚙️ Detalles de entrenamiento
53
 
54
+ - **Modelo base:** LeoCordoba/beto2beto-mlsum
55
+ - **Adaptación:** LoRA (`r=8`, `alpha=16`, `dropout=0.3`, módulos: query, key, value)
56
+ - **Dataset:** 10 000 ejemplos del split `train` de XLSum (spanish)
57
+ - **Épocas:** 3
58
+ - **Batch size:** 16
59
+ - **Learning rate:** 5e-5
60
+ - **Framework:** Transformers + PEFT
61
+ - **Entrenamiento:** Seq2SeqTrainer
62
+ - **Duración total:** 6 h 34 min
63
 
64
+ ### 📊 Resultados del entrenamiento
65
 
66
+ | Step | Training Loss | Validation Loss |
67
+ |------|----------------|-----------------|
68
+ | 100 | 5.77 | 1.17 |
69
+ | 500 | 0.98 | 0.85 |
70
+ | 1000 | 0.92 | 0.83 |
71
+ | 1500 | 0.93 | 0.83 |
72
+ | 1800 | 0.93 | 0.82 |
73
 
74
+ > El modelo converge de manera estable, con un **Validation Loss final ≈ 0.82**, mostrando buena generalización y sin signos de sobreajuste.
75
 
76
+ ## 🧩 Limitaciones
77
 
78
+ - Puede generar resúmenes demasiado breves en textos con múltiples párrafos.
79
+ - No está diseñado para otros idiomas distintos al español.
80
+ - No debe usarse para generar conclusiones analíticas o críticas.
81
 
82
+ ## 📘 Licencia
83
 
84
+ El modelo base y este fine-tune se comparten bajo la misma licencia abierta de Hugging Face.
85
 
86
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
+ **Autores:** Christopher Aponte y David Navarro
89
+ **Repositorio:** [SenaSoft/chdv-summarization](https://huggingface.co/SenaSoft/chdv-summarization)