Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,89 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model: LeoCordoba/beto2beto-mlsum
|
| 3 |
+
library_name: peft
|
| 4 |
+
tags:
|
| 5 |
+
- summarization
|
| 6 |
+
- spanish
|
| 7 |
+
- lora
|
| 8 |
+
- transformers
|
| 9 |
+
- seq2seq
|
| 10 |
+
- beto
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# SenaSoft/chdv-summarization
|
| 14 |
|
| 15 |
+
Modelo de resumen automático de textos en español fine-tuneado a partir de **LeoCordoba/beto2beto-mlsum**, utilizando **LoRA** con la librería **PEFT**.
|
| 16 |
|
| 17 |
+
## 🧠 Descripción del modelo
|
| 18 |
|
| 19 |
+
Este modelo genera resúmenes en español a partir de textos largos, usando una arquitectura **Encoder-Decoder basada en BETO** (BERT español adaptado a tareas de resumen).
|
| 20 |
+
Fue ajustado con un adaptador **LoRA (Low-Rank Adaptation)** para reducir el costo computacional y acelerar el entrenamiento sin sacrificar desempeño.
|
| 21 |
|
| 22 |
+
- **Autores:** Christopher Aponte y David Navarro
|
| 23 |
+
- **Lenguaje:** Español
|
| 24 |
+
- **Tarea:** Resumen de texto (summarization)
|
| 25 |
+
- **Modelo base:** [LeoCordoba/beto2beto-mlsum](https://huggingface.co/LeoCordoba/beto2beto-mlsum)
|
| 26 |
+
- **Framework:** 🤗 Transformers + PEFT
|
| 27 |
+
- **Dataset:** [csebuetnlp/xlsum (configuración: spanish)](https://huggingface.co/datasets/csebuetnlp/xlsum)
|
| 28 |
|
| 29 |
+
## 🚀 Ejemplo de uso
|
| 30 |
|
| 31 |
+
```python
|
| 32 |
+
from transformers import pipeline
|
| 33 |
|
| 34 |
+
# Carga del pipeline de resumen
|
| 35 |
+
resumidor = pipeline("summarization", model="SenaSoft/chdv-summarization")
|
| 36 |
|
| 37 |
+
texto = """
|
| 38 |
+
El aprendizaje automático es una rama fundamental de la inteligencia artificial que se centra en el desarrollo de algoritmos y modelos capaces de aprender a partir de datos. En lugar de seguir instrucciones programadas de forma explícita, estas máquinas identifican patrones, relaciones y tendencias dentro de grandes volúmenes de información, lo que les permite mejorar su rendimiento y tomar decisiones cada vez más precisas con el tiempo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
Esta disciplina se aplica en una amplia variedad de campos. En la visión por computadora, por ejemplo, permite que los sistemas reconozcan rostros, objetos y escenas dentro de imágenes o videos. En el procesamiento de lenguaje natural, posibilita que las máquinas comprendan y generen texto o voz de manera coherente, facilitando herramientas como traductores automáticos, chatbots o asistentes virtuales. También se utiliza en la predicción de comportamientos, donde modelos entrenados con datos históricos pueden anticipar compras de usuarios, detectar fraudes financieros o incluso prever fallas en sistemas industriales.
|
| 41 |
|
| 42 |
+
El impacto del aprendizaje automático es tan amplio que se ha convertido en una de las tecnologías más influyentes del siglo XXI, impulsando la automatización, la personalización de servicios y el análisis inteligente de datos en prácticamente todos los sectores.
|
| 43 |
+
"""
|
| 44 |
|
| 45 |
+
# Generar resumen
|
| 46 |
+
resumen = resumidor(texto, max_length=100, min_length=30, do_sample=False)
|
| 47 |
+
print(resumen[0]["summary_text"])
|
| 48 |
+
```
|
| 49 |
|
| 50 |
+
Tiempo de respuesta aproximado: **1.1 segundos** en GPU T4.
|
| 51 |
|
| 52 |
+
## ⚙️ Detalles de entrenamiento
|
| 53 |
|
| 54 |
+
- **Modelo base:** LeoCordoba/beto2beto-mlsum
|
| 55 |
+
- **Adaptación:** LoRA (`r=8`, `alpha=16`, `dropout=0.3`, módulos: query, key, value)
|
| 56 |
+
- **Dataset:** 10 000 ejemplos del split `train` de XLSum (spanish)
|
| 57 |
+
- **Épocas:** 3
|
| 58 |
+
- **Batch size:** 16
|
| 59 |
+
- **Learning rate:** 5e-5
|
| 60 |
+
- **Framework:** Transformers + PEFT
|
| 61 |
+
- **Entrenamiento:** Seq2SeqTrainer
|
| 62 |
+
- **Duración total:** 6 h 34 min
|
| 63 |
|
| 64 |
+
### 📊 Resultados del entrenamiento
|
| 65 |
|
| 66 |
+
| Step | Training Loss | Validation Loss |
|
| 67 |
+
|------|----------------|-----------------|
|
| 68 |
+
| 100 | 5.77 | 1.17 |
|
| 69 |
+
| 500 | 0.98 | 0.85 |
|
| 70 |
+
| 1000 | 0.92 | 0.83 |
|
| 71 |
+
| 1500 | 0.93 | 0.83 |
|
| 72 |
+
| 1800 | 0.93 | 0.82 |
|
| 73 |
|
| 74 |
+
> El modelo converge de manera estable, con un **Validation Loss final ≈ 0.82**, mostrando buena generalización y sin signos de sobreajuste.
|
| 75 |
|
| 76 |
+
## 🧩 Limitaciones
|
| 77 |
|
| 78 |
+
- Puede generar resúmenes demasiado breves en textos con múltiples párrafos.
|
| 79 |
+
- No está diseñado para otros idiomas distintos al español.
|
| 80 |
+
- No debe usarse para generar conclusiones analíticas o críticas.
|
| 81 |
|
| 82 |
+
## 📘 Licencia
|
| 83 |
|
| 84 |
+
El modelo base y este fine-tune se comparten bajo la misma licencia abierta de Hugging Face.
|
| 85 |
|
| 86 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
**Autores:** Christopher Aponte y David Navarro
|
| 89 |
+
**Repositorio:** [SenaSoft/chdv-summarization](https://huggingface.co/SenaSoft/chdv-summarization)
|