noahsantacruz commited on
Commit
77841b0
1 Parent(s): e08d76b

Update spaCy pipeline

Browse files
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ he_subref_ner-any-py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
37
+ tok2vec/model filter=lfs diff=lfs merge=lfs -text
38
+ vocab/key2row filter=lfs diff=lfs merge=lfs -text
39
+ vocab/strings.json filter=lfs diff=lfs merge=lfs -text
40
+ vocab/vectors filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - spacy
4
+ - token-classification
5
+ language:
6
+ - he
7
+ model-index:
8
+ - name: he_subref_ner
9
+ results:
10
+ - task:
11
+ name: NER
12
+ type: token-classification
13
+ metrics:
14
+ - name: NER Precision
15
+ type: precision
16
+ value: 0.9611848825
17
+ - name: NER Recall
18
+ type: recall
19
+ value: 0.9651282051
20
+ - name: NER F Score
21
+ type: f_score
22
+ value: 0.9631525077
23
+ ---
24
+ | Feature | Description |
25
+ | --- | --- |
26
+ | **Name** | `he_subref_ner` |
27
+ | **Version** | `1.0.0` |
28
+ | **spaCy** | `>=3.4.1,<3.5.0` |
29
+ | **Default Pipeline** | `tok2vec`, `ner` |
30
+ | **Components** | `tok2vec`, `ner` |
31
+ | **Vectors** | 394654 keys, 394654 unique vectors (50 dimensions) |
32
+ | **Sources** | n/a |
33
+ | **License** | n/a |
34
+ | **Author** | [n/a]() |
35
+
36
+ ### Label Scheme
37
+
38
+ <details>
39
+
40
+ <summary>View label scheme (7 labels for 1 components)</summary>
41
+
42
+ | Component | Labels |
43
+ | --- | --- |
44
+ | **`ner`** | `דה`, `כותרת`, `לא-רציף`, `לקמן-להלן`, `מספר`, `סימן-טווח`, `שם` |
45
+
46
+ </details>
47
+
48
+ ### Accuracy
49
+
50
+ | Type | Score |
51
+ | --- | --- |
52
+ | `ENTS_F` | 96.32 |
53
+ | `ENTS_P` | 96.12 |
54
+ | `ENTS_R` | 96.51 |
55
+ | `TOK2VEC_LOSS` | 11226.82 |
56
+ | `NER_LOSS` | 2452.62 |
config.cfg ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [paths]
2
+ train = "corpus/ref_subref_he_train.spacy"
3
+ dev = "corpus/ref_subref_he_test.spacy"
4
+ vectors = "vectors/all_text_he_fasttext_model_50"
5
+ init_tok2vec = "models/pretrain_ref_he_50/model8.bin"
6
+ raw_text = null
7
+
8
+ [system]
9
+ gpu_allocator = null
10
+ seed = 6560
11
+ min_len = 0
12
+
13
+ [nlp]
14
+ lang = "he"
15
+ pipeline = ["tok2vec","ner"]
16
+ batch_size = 1200
17
+ disabled = []
18
+ before_creation = null
19
+ after_creation = null
20
+ after_pipeline_creation = null
21
+ tokenizer = {"@tokenizers":"inner_punct_tokenizer"}
22
+
23
+ [components]
24
+
25
+ [components.ner]
26
+ factory = "ner"
27
+ incorrect_spans_key = null
28
+ moves = null
29
+ scorer = {"@scorers":"spacy.ner_scorer.v1"}
30
+ update_with_oracle_cut_size = 100
31
+
32
+ [components.ner.model]
33
+ @architectures = "spacy.TransitionBasedParser.v2"
34
+ state_type = "ner"
35
+ extra_state_tokens = false
36
+ hidden_width = 32
37
+ maxout_pieces = 3
38
+ use_upper = true
39
+ nO = null
40
+
41
+ [components.ner.model.tok2vec]
42
+ @architectures = "spacy.Tok2VecListener.v1"
43
+ width = ${components.tok2vec.model.encode.width}
44
+ upstream = "*"
45
+
46
+ [components.tok2vec]
47
+ factory = "tok2vec"
48
+
49
+ [components.tok2vec.model]
50
+ @architectures = "spacy.Tok2Vec.v2"
51
+
52
+ [components.tok2vec.model.embed]
53
+ @architectures = "spacy.MultiHashEmbed.v1"
54
+ width = ${components.tok2vec.model.encode.width}
55
+ attrs = ["NORM","PREFIX","SUFFIX","ORTH"]
56
+ rows = [5000,5000,5000,5000]
57
+ include_static_vectors = true
58
+
59
+ [components.tok2vec.model.encode]
60
+ @architectures = "spacy.MaxoutWindowEncoder.v2"
61
+ width = 256
62
+ depth = 8
63
+ window_size = 1
64
+ maxout_pieces = 3
65
+
66
+ [corpora]
67
+
68
+ [corpora.dev]
69
+ @readers = "spacy.Corpus.v1"
70
+ path = ${paths.dev}
71
+ gold_preproc = false
72
+ max_length = 0
73
+ limit = 0
74
+ augmenter = null
75
+
76
+ [corpora.pretrain]
77
+ @readers = "spacy.JsonlCorpus.v1"
78
+ path = ${paths.raw_text}
79
+ min_length = 5
80
+ max_length = 512
81
+ limit = 0
82
+
83
+ [corpora.train]
84
+ @readers = "spacy.Corpus.v1"
85
+ path = ${paths.train}
86
+ gold_preproc = false
87
+ max_length = 0
88
+ limit = 0
89
+ augmenter = null
90
+
91
+ [training]
92
+ dev_corpus = "corpora.dev"
93
+ train_corpus = "corpora.train"
94
+ seed = ${system.seed}
95
+ gpu_allocator = ${system.gpu_allocator}
96
+ dropout = 0.5
97
+ accumulate_gradient = 1
98
+ patience = 1600
99
+ max_epochs = 0
100
+ max_steps = 20000
101
+ eval_frequency = 100
102
+ frozen_components = []
103
+ before_to_disk = null
104
+ annotating_components = []
105
+
106
+ [training.batcher]
107
+ @batchers = "spacy.batch_by_words.v1"
108
+ discard_oversize = false
109
+ tolerance = 0.2
110
+ get_length = null
111
+
112
+ [training.batcher.size]
113
+ @schedules = "compounding.v1"
114
+ start = 100
115
+ stop = 1000
116
+ compound = 1.001
117
+ t = 0.0
118
+
119
+ [training.logger]
120
+ @loggers = "spacy.ConsoleLogger.v1"
121
+ progress_bar = true
122
+
123
+ [training.optimizer]
124
+ @optimizers = "Adam.v1"
125
+ beta1 = 0.9
126
+ beta2 = 0.999
127
+ L2_is_weight_decay = true
128
+ L2 = 0.01
129
+ grad_clip = 1.0
130
+ use_averages = false
131
+ eps = 0.00000001
132
+ learn_rate = 0.0007
133
+
134
+ [training.score_weights]
135
+ ents_f = 1.0
136
+ ents_p = 0.0
137
+ ents_r = 0.0
138
+ ents_per_type = null
139
+
140
+ [pretraining]
141
+ max_epochs = 15
142
+ dropout = 0.5
143
+ n_save_every = null
144
+ n_save_epoch = null
145
+ component = "tok2vec"
146
+ layer = ""
147
+ corpus = "corpora.pretrain"
148
+
149
+ [pretraining.batcher]
150
+ @batchers = "spacy.batch_by_words.v1"
151
+ size = 10000
152
+ discard_oversize = false
153
+ tolerance = 0.2
154
+ get_length = null
155
+
156
+ [pretraining.objective]
157
+ @architectures = "spacy.PretrainCharacters.v1"
158
+ maxout_pieces = 3
159
+ hidden_size = 50
160
+ n_characters = 4
161
+
162
+ [pretraining.optimizer]
163
+ @optimizers = "Adam.v1"
164
+ beta1 = 0.9
165
+ beta2 = 0.999
166
+ L2_is_weight_decay = true
167
+ L2 = 0.01
168
+ grad_clip = 1.0
169
+ use_averages = true
170
+ eps = 0.00000001
171
+ learn_rate = 0.001
172
+
173
+ [initialize]
174
+ vectors = ${paths.vectors}
175
+ init_tok2vec = ${paths.init_tok2vec}
176
+ vocab_data = null
177
+ lookups = null
178
+ before_init = null
179
+ after_init = null
180
+
181
+ [initialize.components]
182
+
183
+ [initialize.tokenizer]
he_subref_ner-any-py3-none-any.whl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4480a8acec08bae08b8a8be4cbd13d04ed986390b6625630b5da371d4c24c2f0
3
+ size 119574549
meta.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "lang":"he",
3
+ "name":"subref_ner",
4
+ "version":"1.0.0",
5
+ "description":"",
6
+ "author":"",
7
+ "email":"",
8
+ "url":"",
9
+ "license":"",
10
+ "spacy_version":">=3.4.1,<3.5.0",
11
+ "spacy_git_version":"Unknown",
12
+ "vectors":{
13
+ "width":50,
14
+ "vectors":394654,
15
+ "keys":394654,
16
+ "name":"he_pipeline.vectors"
17
+ },
18
+ "labels":{
19
+ "tok2vec":[
20
+
21
+ ],
22
+ "ner":[
23
+ "\u05d3\u05d4",
24
+ "\u05db\u05d5\u05ea\u05e8\u05ea",
25
+ "\u05dc\u05d0-\u05e8\u05e6\u05d9\u05e3",
26
+ "\u05dc\u05e7\u05de\u05df-\u05dc\u05d4\u05dc\u05df",
27
+ "\u05de\u05e1\u05e4\u05e8",
28
+ "\u05e1\u05d9\u05de\u05df-\u05d8\u05d5\u05d5\u05d7",
29
+ "\u05e9\u05dd"
30
+ ]
31
+ },
32
+ "pipeline":[
33
+ "tok2vec",
34
+ "ner"
35
+ ],
36
+ "components":[
37
+ "tok2vec",
38
+ "ner"
39
+ ],
40
+ "disabled":[
41
+
42
+ ],
43
+ "performance":{
44
+ "ents_f":0.9631525077,
45
+ "ents_p":0.9611848825,
46
+ "ents_r":0.9651282051,
47
+ "ents_per_type":{
48
+ "\u05de\u05e1\u05e4\u05e8":{
49
+ "p":0.9608695652,
50
+ "r":0.9800443459,
51
+ "f":0.9703622393
52
+ },
53
+ "\u05e1\u05d9\u05de\u05df-\u05d8\u05d5\u05d5\u05d7":{
54
+ "p":0.95,
55
+ "r":1.0,
56
+ "f":0.9743589744
57
+ },
58
+ "\u05db\u05d5\u05ea\u05e8\u05ea":{
59
+ "p":0.9608355091,
60
+ "r":0.9435897436,
61
+ "f":0.9521345408
62
+ },
63
+ "\u05d3\u05d4":{
64
+ "p":0.9696969697,
65
+ "r":0.9696969697,
66
+ "f":0.9696969697
67
+ },
68
+ "\u05dc\u05e7\u05de\u05df-\u05dc\u05d4\u05dc\u05df":{
69
+ "p":0.9166666667,
70
+ "r":1.0,
71
+ "f":0.9565217391
72
+ },
73
+ "\u05e9\u05dd":{
74
+ "p":1.0,
75
+ "r":1.0,
76
+ "f":1.0
77
+ },
78
+ "\u05dc\u05d0-\u05e8\u05e6\u05d9\u05e3":{
79
+ "p":0.0,
80
+ "r":0.0,
81
+ "f":0.0
82
+ }
83
+ },
84
+ "tok2vec_loss":112.2682225389,
85
+ "ner_loss":24.5261597009
86
+ },
87
+ "requirements":[
88
+
89
+ ]
90
+ }
ner/cfg ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "moves":null,
3
+ "update_with_oracle_cut_size":100,
4
+ "multitasks":[
5
+
6
+ ],
7
+ "min_action_freq":1,
8
+ "learn_tokens":false,
9
+ "beam_width":1,
10
+ "beam_density":0.0,
11
+ "beam_update_prob":0.0,
12
+ "incorrect_spans_key":null
13
+ }
ner/model ADDED
Binary file (76 kB). View file
 
ner/moves ADDED
@@ -0,0 +1 @@
 
 
1
+ ��moves�L{"0":{},"1":{"\u05de\u05e1\u05e4\u05e8":4676,"\u05db\u05d5\u05ea\u05e8\u05ea":3195,"\u05d3\u05d4":1213,"\u05e9\u05dd":111,"\u05e1\u05d9\u05de\u05df-\u05d8\u05d5\u05d5\u05d7":104,"\u05dc\u05e7\u05de\u05df-\u05dc\u05d4\u05dc\u05df":101,"\u05dc\u05d0-\u05e8\u05e6\u05d9\u05e3":8},"2":{"\u05de\u05e1\u05e4\u05e8":4676,"\u05db\u05d5\u05ea\u05e8\u05ea":3195,"\u05d3\u05d4":1213,"\u05e9\u05dd":111,"\u05e1\u05d9\u05de\u05df-\u05d8\u05d5\u05d5\u05d7":104,"\u05dc\u05e7\u05de\u05df-\u05dc\u05d4\u05dc\u05df":101,"\u05dc\u05d0-\u05e8\u05e6\u05d9\u05e3":8},"3":{"\u05de\u05e1\u05e4\u05e8":4676,"\u05db\u05d5\u05ea\u05e8\u05ea":3195,"\u05d3\u05d4":1213,"\u05e9\u05dd":111,"\u05e1\u05d9\u05de\u05df-\u05d8\u05d5\u05d5\u05d7":104,"\u05dc\u05e7\u05de\u05df-\u05dc\u05d4\u05dc\u05df":101,"\u05dc\u05d0-\u05e8\u05e6\u05d9\u05e3":8},"4":{"\u05de\u05e1\u05e4\u05e8":4676,"\u05db\u05d5\u05ea\u05e8\u05ea":3195,"\u05d3\u05d4":1213,"\u05e9\u05dd":111,"\u05e1\u05d9\u05de\u05df-\u05d8\u05d5\u05d5\u05d7":104,"\u05dc\u05e7\u05de\u05df-\u05dc\u05d4\u05dc\u05df":101,"\u05dc\u05d0-\u05e8\u05e6\u05d9\u05e3":8,"":1},"5":{"":1}}�cfg��neg_key�
spacy_function_registry.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spacy, re
2
+ from spacy.tokenizer import Tokenizer
3
+
4
+ """
5
+ python -m spacy package ref_he packages -c /Users/nss/sefaria/project/sefaria/spacy_function_registry.py -b wheel,sdist -n ref_ner -v 1.0.0
6
+ python -m spacy huggingface-hub push packages/he_ref_ner-1.0.0/dist/he_ref_ner-1.0.0-py3-none-any.whl -o Sefaria
7
+ """
8
+
9
+ @spacy.registry.tokenizers("inner_punct_tokenizer")
10
+ def inner_punct_tokenizer_factory():
11
+ def inner_punct_tokenizer(nlp):
12
+ # infix_re = spacy.util.compile_infix_regex(nlp.Defaults.infixes)
13
+ infix_re = re.compile(r'''[.,?!:;…‘’`“”"'~–\-/()<>]''')
14
+ prefix_re = spacy.util.compile_prefix_regex(nlp.Defaults.prefixes)
15
+ suffix_re = spacy.util.compile_suffix_regex(nlp.Defaults.suffixes)
16
+
17
+ return Tokenizer(nlp.vocab, prefix_search=prefix_re.search,
18
+ suffix_search=suffix_re.search,
19
+ infix_finditer=infix_re.finditer,
20
+ token_match=None)
21
+ return inner_punct_tokenizer
tok2vec/cfg ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+
3
+ }
tok2vec/model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22954e946350b7b2fa7598ae790ec3c2b420a64647d5fbc7123c7995da885388
3
+ size 43394001
tokenizer ADDED
@@ -0,0 +1 @@
 
 
1
+ ��prefix_search� ~^§|^%|^=|^—|^–|^\+(?![0-9])|^…|^……|^,|^:|^;|^\!|^\?|^¿|^؟|^¡|^\(|^\)|^\[|^\]|^\{|^\}|^<|^>|^_|^#|^\*|^&|^。|^?|^!|^,|^、|^;|^:|^~|^·|^।|^،|^۔|^؛|^٪|^\.\.+|^…|^\'|^"|^”|^“|^`|^‘|^´|^’|^‚|^,|^„|^»|^«|^「|^」|^『|^』|^(|^)|^〔|^〕|^【|^】|^《|^》|^〈|^〉|^\$|^£|^€|^¥|^฿|^US\$|^C\$|^A\$|^₽|^﷼|^₴|^₠|^₡|^₢|^₣|^₤|^₥|^₦|^₧|^₨|^₩|^₪|^₫|^€|^₭|^₮|^₯|^₰|^₱|^₲|^₳|^₴|^₵|^₶|^₷|^₸|^₹|^₺|^₻|^₼|^₽|^₾|^₿|^[\u00A6\u00A9\u00AE\u00B0\u0482\u058D\u058E\u060E\u060F\u06DE\u06E9\u06FD\u06FE\u07F6\u09FA\u0B70\u0BF3-\u0BF8\u0BFA\u0C7F\u0D4F\u0D79\u0F01-\u0F03\u0F13\u0F15-\u0F17\u0F1A-\u0F1F\u0F34\u0F36\u0F38\u0FBE-\u0FC5\u0FC7-\u0FCC\u0FCE\u0FCF\u0FD5-\u0FD8\u109E\u109F\u1390-\u1399\u1940\u19DE-\u19FF\u1B61-\u1B6A\u1B74-\u1B7C\u2100\u2101\u2103-\u2106\u2108\u2109\u2114\u2116\u2117\u211E-\u2123\u2125\u2127\u2129\u212E\u213A\u213B\u214A\u214C\u214D\u214F\u218A\u218B\u2195-\u2199\u219C-\u219F\u21A1\u21A2\u21A4\u21A5\u21A7-\u21AD\u21AF-\u21CD\u21D0\u21D1\u21D3\u21D5-\u21F3\u2300-\u2307\u230C-\u231F\u2322-\u2328\u232B-\u237B\u237D-\u239A\u23B4-\u23DB\u23E2-\u2426\u2440-\u244A\u249C-\u24E9\u2500-\u25B6\u25B8-\u25C0\u25C2-\u25F7\u2600-\u266E\u2670-\u2767\u2794-\u27BF\u2800-\u28FF\u2B00-\u2B2F\u2B45\u2B46\u2B4D-\u2B73\u2B76-\u2B95\u2B98-\u2BC8\u2BCA-\u2BFE\u2CE5-\u2CEA\u2E80-\u2E99\u2E9B-\u2EF3\u2F00-\u2FD5\u2FF0-\u2FFB\u3004\u3012\u3013\u3020\u3036\u3037\u303E\u303F\u3190\u3191\u3196-\u319F\u31C0-\u31E3\u3200-\u321E\u322A-\u3247\u3250\u3260-\u327F\u328A-\u32B0\u32C0-\u32FE\u3300-\u33FF\u4DC0-\u4DFF\uA490-\uA4C6\uA828-\uA82B\uA836\uA837\uA839\uAA77-\uAA79\uFDFD\uFFE4\uFFE8\uFFED\uFFEE\uFFFC\uFFFD\U00010137-\U0001013F\U00010179-\U00010189\U0001018C-\U0001018E\U00010190-\U0001019B\U000101A0\U000101D0-\U000101FC\U00010877\U00010878\U00010AC8\U0001173F\U00016B3C-\U00016B3F\U00016B45\U0001BC9C\U0001D000-\U0001D0F5\U0001D100-\U0001D126\U0001D129-\U0001D164\U0001D16A-\U0001D16C\U0001D183\U0001D184\U0001D18C-\U0001D1A9\U0001D1AE-\U0001D1E8\U0001D200-\U0001D241\U0001D245\U0001D300-\U0001D356\U0001D800-\U0001D9FF\U0001DA37-\U0001DA3A\U0001DA6D-\U0001DA74\U0001DA76-\U0001DA83\U0001DA85\U0001DA86\U0001ECAC\U0001F000-\U0001F02B\U0001F030-\U0001F093\U0001F0A0-\U0001F0AE\U0001F0B1-\U0001F0BF\U0001F0C1-\U0001F0CF\U0001F0D1-\U0001F0F5\U0001F110-\U0001F16B\U0001F170-\U0001F1AC\U0001F1E6-\U0001F202\U0001F210-\U0001F23B\U0001F240-\U0001F248\U0001F250\U0001F251\U0001F260-\U0001F265\U0001F300-\U0001F3FA\U0001F400-\U0001F6D4\U0001F6E0-\U0001F6EC\U0001F6F0-\U0001F6F9\U0001F700-\U0001F773\U0001F780-\U0001F7D8\U0001F800-\U0001F80B\U0001F810-\U0001F847\U0001F850-\U0001F859\U0001F860-\U0001F887\U0001F890-\U0001F8AD\U0001F900-\U0001F90B\U0001F910-\U0001F93E\U0001F940-\U0001F970\U0001F973-\U0001F976\U0001F97A\U0001F97C-\U0001F9A2\U0001F9B0-\U0001F9B9\U0001F9C0-\U0001F9C2\U0001F9D0-\U0001F9FF\U0001FA60-\U0001FA6D]�suffix_search�2y…$|……$|,$|:$|;$|\!$|\?$|¿$|؟$|¡$|\($|\)$|\[$|\]$|\{$|\}$|<$|>$|_$|#$|\*$|&$|。$|?$|!$|,$|、$|;$|:$|~$|·$|।$|،$|۔$|؛$|٪$|\.\.+$|…$|\'$|"$|”$|“$|`$|‘$|´$|’$|‚$|,$|„$|»$|«$|「$|」$|『$|』$|($|)$|〔$|〕$|【$|】$|《$|》$|〈$|〉$|[\u00A6\u00A9\u00AE\u00B0\u0482\u058D\u058E\u060E\u060F\u06DE\u06E9\u06FD\u06FE\u07F6\u09FA\u0B70\u0BF3-\u0BF8\u0BFA\u0C7F\u0D4F\u0D79\u0F01-\u0F03\u0F13\u0F15-\u0F17\u0F1A-\u0F1F\u0F34\u0F36\u0F38\u0FBE-\u0FC5\u0FC7-\u0FCC\u0FCE\u0FCF\u0FD5-\u0FD8\u109E\u109F\u1390-\u1399\u1940\u19DE-\u19FF\u1B61-\u1B6A\u1B74-\u1B7C\u2100\u2101\u2103-\u2106\u2108\u2109\u2114\u2116\u2117\u211E-\u2123\u2125\u2127\u2129\u212E\u213A\u213B\u214A\u214C\u214D\u214F\u218A\u218B\u2195-\u2199\u219C-\u219F\u21A1\u21A2\u21A4\u21A5\u21A7-\u21AD\u21AF-\u21CD\u21D0\u21D1\u21D3\u21D5-\u21F3\u2300-\u2307\u230C-\u231F\u2322-\u2328\u232B-\u237B\u237D-\u239A\u23B4-\u23DB\u23E2-\u2426\u2440-\u244A\u249C-\u24E9\u2500-\u25B6\u25B8-\u25C0\u25C2-\u25F7\u2600-\u266E\u2670-\u2767\u2794-\u27BF\u2800-\u28FF\u2B00-\u2B2F\u2B45\u2B46\u2B4D-\u2B73\u2B76-\u2B95\u2B98-\u2BC8\u2BCA-\u2BFE\u2CE5-\u2CEA\u2E80-\u2E99\u2E9B-\u2EF3\u2F00-\u2FD5\u2FF0-\u2FFB\u3004\u3012\u3013\u3020\u3036\u3037\u303E\u303F\u3190\u3191\u3196-\u319F\u31C0-\u31E3\u3200-\u321E\u322A-\u3247\u3250\u3260-\u327F\u328A-\u32B0\u32C0-\u32FE\u3300-\u33FF\u4DC0-\u4DFF\uA490-\uA4C6\uA828-\uA82B\uA836\uA837\uA839\uAA77-\uAA79\uFDFD\uFFE4\uFFE8\uFFED\uFFEE\uFFFC\uFFFD\U00010137-\U0001013F\U00010179-\U00010189\U0001018C-\U0001018E\U00010190-\U0001019B\U000101A0\U000101D0-\U000101FC\U00010877\U00010878\U00010AC8\U0001173F\U00016B3C-\U00016B3F\U00016B45\U0001BC9C\U0001D000-\U0001D0F5\U0001D100-\U0001D126\U0001D129-\U0001D164\U0001D16A-\U0001D16C\U0001D183\U0001D184\U0001D18C-\U0001D1A9\U0001D1AE-\U0001D1E8\U0001D200-\U0001D241\U0001D245\U0001D300-\U0001D356\U0001D800-\U0001D9FF\U0001DA37-\U0001DA3A\U0001DA6D-\U0001DA74\U0001DA76-\U0001DA83\U0001DA85\U0001DA86\U0001ECAC\U0001F000-\U0001F02B\U0001F030-\U0001F093\U0001F0A0-\U0001F0AE\U0001F0B1-\U0001F0BF\U0001F0C1-\U0001F0CF\U0001F0D1-\U0001F0F5\U0001F110-\U0001F16B\U0001F170-\U0001F1AC\U0001F1E6-\U0001F202\U0001F210-\U0001F23B\U0001F240-\U0001F248\U0001F250\U0001F251\U0001F260-\U0001F265\U0001F300-\U0001F3FA\U0001F400-\U0001F6D4\U0001F6E0-\U0001F6EC\U0001F6F0-\U0001F6F9\U0001F700-\U0001F773\U0001F780-\U0001F7D8\U0001F800-\U0001F80B\U0001F810-\U0001F847\U0001F850-\U0001F859\U0001F860-\U0001F887\U0001F890-\U0001F8AD\U0001F900-\U0001F90B\U0001F910-\U0001F93E\U0001F940-\U0001F970\U0001F973-\U0001F976\U0001F97A\U0001F97C-\U0001F9A2\U0001F9B0-\U0001F9B9\U0001F9C0-\U0001F9C2\U0001F9D0-\U0001F9FF\U0001FA60-\U0001FA6D]$|'s$|'S$|’s$|’S$|—$|–$|(?<=[0-9])\+$|(?<=°[FfCcKk])\.$|(?<=[0-9])(?:\$|£|€|¥|฿|US\$|C\$|A\$|₽|﷼|₴|₠|₡|₢|₣|₤|₥|₦|₧|₨|₩|₪|₫|€|₭|₮|₯|₰|₱|₲|₳|₴|₵|₶|₷|₸|₹|₺|₻|₼|₽|₾|₿)$|(?<=[0-9])(?:km|km²|km³|m|m²|m³|dm|dm²|dm³|cm|cm²|cm³|mm|mm²|mm³|ha|µm|nm|yd|in|ft|kg|g|mg|µg|t|lb|oz|m/s|km/h|kmh|mph|hPa|Pa|mbar|mb|MB|kb|KB|gb|GB|tb|TB|T|G|M|K|%|км|км²|км³|м|м²|м³|дм|дм²|дм³|см|см²|см³|мм|мм²|мм³|нм|кг|г|мг|м/с|км/ч|кПа|Па|мбар|Кб|КБ|кб|Мб|МБ|мб|Гб|ГБ|гб|Тб|ТБ|тбكم|كم²|كم³|م|م²|م³|سم|سم²|سم³|مم|مم²|مم³|كم|غرام|جرام|جم|كغ|ملغ|كوب|اكواب)$|(?<=[0-9a-z\uFF41-\uFF5A\u00DF-\u00F6\u00F8-\u00FF\u0101\u0103\u0105\u0107\u0109\u010B\u010D\u010F\u0111\u0113\u0115\u0117\u0119\u011B\u011D\u011F\u0121\u0123\u0125\u0127\u0129\u012B\u012D\u012F\u0131\u0133\u0135\u0137\u0138\u013A\u013C\u013E\u0140\u0142\u0144\u0146\u0148\u0149\u014B\u014D\u014F\u0151\u0153\u0155\u0157\u0159\u015B\u015D\u015F\u0161\u0163\u0165\u0167\u0169\u016B\u016D\u016F\u0171\u0173\u0175\u0177\u017A\u017C\u017E\u017F\u0180\u0183\u0185\u0188\u018C\u018D\u0192\u0195\u0199-\u019B\u019E\u01A1\u01A3\u01A5\u01A8\u01AA\u01AB\u01AD\u01B0\u01B4\u01B6\u01B9\u01BA\u01BD-\u01BF\u01C6\u01C9\u01CC\u01CE\u01D0\u01D2\u01D4\u01D6\u01D8\u01DA\u01DC\u01DD\u01DF\u01E1\u01E3\u01E5\u01E7\u01E9\u01EB\u01ED\u01EF\u01F0\u01F3\u01F5\u01F9\u01FB\u01FD\u01FF\u0201\u0203\u0205\u0207\u0209\u020B\u020D\u020F\u0211\u0213\u0215\u0217\u0219\u021B\u021D\u021F\u0221\u0223\u0225\u0227\u0229\u022B\u022D\u022F\u0231\u0233-\u0239\u023C\u023F\u0240\u0242\u0247\u0249\u024B\u024D\u024F\u2C61\u2C65\u2C66\u2C68\u2C6A\u2C6C\u2C71\u2C73\u2C74\u2C76-\u2C7B\uA723\uA725\uA727\uA729\uA72B\uA72D\uA72F-\uA731\uA733\uA735\uA737\uA739\uA73B\uA73D\uA73F\uA741\uA743\uA745\uA747\uA749\uA74B\uA74D\uA74F\uA751\uA753\uA755\uA757\uA759\uA75B\uA75D\uA75F\uA761\uA763\uA765\uA767\uA769\uA76B\uA76D\uA76F\uA771-\uA778\uA77A\uA77C\uA77F\uA781\uA783\uA785\uA787\uA78C\uA78E\uA791\uA793-\uA795\uA797\uA799\uA79B\uA79D\uA79F\uA7A1\uA7A3\uA7A5\uA7A7\uA7A9\uA7AF\uA7B5\uA7B7\uA7B9\uA7FA\uAB30-\uAB5A\uAB60-\uAB64\u0250-\u02AF\u1D00-\u1D25\u1D6B-\u1D77\u1D79-\u1D9A\u1E01\u1E03\u1E05\u1E07\u1E09\u1E0B\u1E0D\u1E0F\u1E11\u1E13\u1E15\u1E17\u1E19\u1E1B\u1E1D\u1E1F\u1E21\u1E23\u1E25\u1E27\u1E29\u1E2B\u1E2D\u1E2F\u1E31\u1E33\u1E35\u1E37\u1E39\u1E3B\u1E3D\u1E3F\u1E41\u1E43\u1E45\u1E47\u1E49\u1E4B\u1E4D\u1E4F\u1E51\u1E53\u1E55\u1E57\u1E59\u1E5B\u1E5D\u1E5F\u1E61\u1E63\u1E65\u1E67\u1E69\u1E6B\u1E6D\u1E6F\u1E71\u1E73\u1E75\u1E77\u1E79\u1E7B\u1E7D\u1E7F\u1E81\u1E83\u1E85\u1E87\u1E89\u1E8B\u1E8D\u1E8F\u1E91\u1E93\u1E95-\u1E9D\u1E9F\u1EA1\u1EA3\u1EA5\u1EA7\u1EA9\u1EAB\u1EAD\u1EAF\u1EB1\u1EB3\u1EB5\u1EB7\u1EB9\u1EBB\u1EBD\u1EBF\u1EC1\u1EC3\u1EC5\u1EC7\u1EC9\u1ECB\u1ECD\u1ECF\u1ED1\u1ED3\u1ED5\u1ED7\u1ED9\u1EDB\u1EDD\u1EDF\u1EE1\u1EE3\u1EE5\u1EE7\u1EE9\u1EEB\u1EED\u1EEF\u1EF1\u1EF3\u1EF5\u1EF7\u1EF9\u1EFB\u1EFD\u1EFFёа-яәөүҗңһα-ωάέίόώήύа-щюяіїєґѓѕјљњќѐѝ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F%²\-\+…|……|,|:|;|\!|\?|¿|؟|¡|\(|\)|\[|\]|\{|\}|<|>|_|#|\*|&|。|?|!|,|、|;|:|~|·|।|،|۔|؛|٪(?:\'"”“`‘´’‚,„»«「」『』()〔〕【】《》〈〉)])\.$|(?<=[A-Z\uFF21-\uFF3A\u00C0-\u00D6\u00D8-\u00DE\u0100\u0102\u0104\u0106\u0108\u010A\u010C\u010E\u0110\u0112\u0114\u0116\u0118\u011A\u011C\u011E\u0120\u0122\u0124\u0126\u0128\u012A\u012C\u012E\u0130\u0132\u0134\u0136\u0139\u013B\u013D\u013F\u0141\u0143\u0145\u0147\u014A\u014C\u014E\u0150\u0152\u0154\u0156\u0158\u015A\u015C\u015E\u0160\u0162\u0164\u0166\u0168\u016A\u016C\u016E\u0170\u0172\u0174\u0176\u0178\u0179\u017B\u017D\u0181\u0182\u0184\u0186\u0187\u0189-\u018B\u018E-\u0191\u0193\u0194\u0196-\u0198\u019C\u019D\u019F\u01A0\u01A2\u01A4\u01A6\u01A7\u01A9\u01AC\u01AE\u01AF\u01B1-\u01B3\u01B5\u01B7\u01B8\u01BC\u01C4\u01C7\u01CA\u01CD\u01CF\u01D1\u01D3\u01D5\u01D7\u01D9\u01DB\u01DE\u01E0\u01E2\u01E4\u01E6\u01E8\u01EA\u01EC\u01EE\u01F1\u01F4\u01F6-\u01F8\u01FA\u01FC\u01FE\u0200\u0202\u0204\u0206\u0208\u020A\u020C\u020E\u0210\u0212\u0214\u0216\u0218\u021A\u021C\u021E\u0220\u0222\u0224\u0226\u0228\u022A\u022C\u022E\u0230\u0232\u023A\u023B\u023D\u023E\u0241\u0243-\u0246\u0248\u024A\u024C\u024E\u2C60\u2C62-\u2C64\u2C67\u2C69\u2C6B\u2C6D-\u2C70\u2C72\u2C75\u2C7E\u2C7F\uA722\uA724\uA726\uA728\uA72A\uA72C\uA72E\uA732\uA734\uA736\uA738\uA73A\uA73C\uA73E\uA740\uA742\uA744\uA746\uA748\uA74A\uA74C\uA74E\uA750\uA752\uA754\uA756\uA758\uA75A\uA75C\uA75E\uA760\uA762\uA764\uA766\uA768\uA76A\uA76C\uA76E\uA779\uA77B\uA77D\uA77E\uA780\uA782\uA784\uA786\uA78B\uA78D\uA790\uA792\uA796\uA798\uA79A\uA79C\uA79E\uA7A0\uA7A2\uA7A4\uA7A6\uA7A8\uA7AA-\uA7AE\uA7B0-\uA7B4\uA7B6\uA7B8\u1E00\u1E02\u1E04\u1E06\u1E08\u1E0A\u1E0C\u1E0E\u1E10\u1E12\u1E14\u1E16\u1E18\u1E1A\u1E1C\u1E1E\u1E20\u1E22\u1E24\u1E26\u1E28\u1E2A\u1E2C\u1E2E\u1E30\u1E32\u1E34\u1E36\u1E38\u1E3A\u1E3C\u1E3E\u1E40\u1E42\u1E44\u1E46\u1E48\u1E4A\u1E4C\u1E4E\u1E50\u1E52\u1E54\u1E56\u1E58\u1E5A\u1E5C\u1E5E\u1E60\u1E62\u1E64\u1E66\u1E68\u1E6A\u1E6C\u1E6E\u1E70\u1E72\u1E74\u1E76\u1E78\u1E7A\u1E7C\u1E7E\u1E80\u1E82\u1E84\u1E86\u1E88\u1E8A\u1E8C\u1E8E\u1E90\u1E92\u1E94\u1E9E\u1EA0\u1EA2\u1EA4\u1EA6\u1EA8\u1EAA\u1EAC\u1EAE\u1EB0\u1EB2\u1EB4\u1EB6\u1EB8\u1EBA\u1EBC\u1EBE\u1EC0\u1EC2\u1EC4\u1EC6\u1EC8\u1ECA\u1ECC\u1ECE\u1ED0\u1ED2\u1ED4\u1ED6\u1ED8\u1EDA\u1EDC\u1EDE\u1EE0\u1EE2\u1EE4\u1EE6\u1EE8\u1EEA\u1EEC\u1EEE\u1EF0\u1EF2\u1EF4\u1EF6\u1EF8\u1EFA\u1EFC\u1EFEЁА-ЯӘӨҮҖҢҺΑ-ΩΆΈΊΌΏΉΎА-ЩЮЯІЇЄҐЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F][A-Z\uFF21-\uFF3A\u00C0-\u00D6\u00D8-\u00DE\u0100\u0102\u0104\u0106\u0108\u010A\u010C\u010E\u0110\u0112\u0114\u0116\u0118\u011A\u011C\u011E\u0120\u0122\u0124\u0126\u0128\u012A\u012C\u012E\u0130\u0132\u0134\u0136\u0139\u013B\u013D\u013F\u0141\u0143\u0145\u0147\u014A\u014C\u014E\u0150\u0152\u0154\u0156\u0158\u015A\u015C\u015E\u0160\u0162\u0164\u0166\u0168\u016A\u016C\u016E\u0170\u0172\u0174\u0176\u0178\u0179\u017B\u017D\u0181\u0182\u0184\u0186\u0187\u0189-\u018B\u018E-\u0191\u0193\u0194\u0196-\u0198\u019C\u019D\u019F\u01A0\u01A2\u01A4\u01A6\u01A7\u01A9\u01AC\u01AE\u01AF\u01B1-\u01B3\u01B5\u01B7\u01B8\u01BC\u01C4\u01C7\u01CA\u01CD\u01CF\u01D1\u01D3\u01D5\u01D7\u01D9\u01DB\u01DE\u01E0\u01E2\u01E4\u01E6\u01E8\u01EA\u01EC\u01EE\u01F1\u01F4\u01F6-\u01F8\u01FA\u01FC\u01FE\u0200\u0202\u0204\u0206\u0208\u020A\u020C\u020E\u0210\u0212\u0214\u0216\u0218\u021A\u021C\u021E\u0220\u0222\u0224\u0226\u0228\u022A\u022C\u022E\u0230\u0232\u023A\u023B\u023D\u023E\u0241\u0243-\u0246\u0248\u024A\u024C\u024E\u2C60\u2C62-\u2C64\u2C67\u2C69\u2C6B\u2C6D-\u2C70\u2C72\u2C75\u2C7E\u2C7F\uA722\uA724\uA726\uA728\uA72A\uA72C\uA72E\uA732\uA734\uA736\uA738\uA73A\uA73C\uA73E\uA740\uA742\uA744\uA746\uA748\uA74A\uA74C\uA74E\uA750\uA752\uA754\uA756\uA758\uA75A\uA75C\uA75E\uA760\uA762\uA764\uA766\uA768\uA76A\uA76C\uA76E\uA779\uA77B\uA77D\uA77E\uA780\uA782\uA784\uA786\uA78B\uA78D\uA790\uA792\uA796\uA798\uA79A\uA79C\uA79E\uA7A0\uA7A2\uA7A4\uA7A6\uA7A8\uA7AA-\uA7AE\uA7B0-\uA7B4\uA7B6\uA7B8\u1E00\u1E02\u1E04\u1E06\u1E08\u1E0A\u1E0C\u1E0E\u1E10\u1E12\u1E14\u1E16\u1E18\u1E1A\u1E1C\u1E1E\u1E20\u1E22\u1E24\u1E26\u1E28\u1E2A\u1E2C\u1E2E\u1E30\u1E32\u1E34\u1E36\u1E38\u1E3A\u1E3C\u1E3E\u1E40\u1E42\u1E44\u1E46\u1E48\u1E4A\u1E4C\u1E4E\u1E50\u1E52\u1E54\u1E56\u1E58\u1E5A\u1E5C\u1E5E\u1E60\u1E62\u1E64\u1E66\u1E68\u1E6A\u1E6C\u1E6E\u1E70\u1E72\u1E74\u1E76\u1E78\u1E7A\u1E7C\u1E7E\u1E80\u1E82\u1E84\u1E86\u1E88\u1E8A\u1E8C\u1E8E\u1E90\u1E92\u1E94\u1E9E\u1EA0\u1EA2\u1EA4\u1EA6\u1EA8\u1EAA\u1EAC\u1EAE\u1EB0\u1EB2\u1EB4\u1EB6\u1EB8\u1EBA\u1EBC\u1EBE\u1EC0\u1EC2\u1EC4\u1EC6\u1EC8\u1ECA\u1ECC\u1ECE\u1ED0\u1ED2\u1ED4\u1ED6\u1ED8\u1EDA\u1EDC\u1EDE\u1EE0\u1EE2\u1EE4\u1EE6\u1EE8\u1EEA\u1EEC\u1EEE\u1EF0\u1EF2\u1EF4\u1EF6\u1EF8\u1EFA\u1EFC\u1EFEЁА-ЯӘӨҮҖҢҺΑ-ΩΆΈΊΌΏΉΎА-ЩЮЯІЇЄҐЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F])\.$�infix_finditer�1[\.\,\?\:\;…\‘\’\`\“\”\"\'~\–\-/\(\)]�token_match��url_match��exceptions��faster_heuristics�
vocab/key2row ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ad4d7b0ceee0f4ae3d009cd763365baeab5c20c74e11cb5265f378d46f2325c
3
+ size 5393641
vocab/lookups.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76be8b528d0075f7aae98d6fa57a6d3c83ae480a8469e668d7b0af968995ac71
3
+ size 1
vocab/strings.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bacb47e1488e9f01046dac7b7b9262b734ad0e21e9fc1a5d6ac72f47e7275d90
3
+ size 16182512
vocab/vectors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd76b4de9d0afe55b3a87853d0a6929f4d117a3e2ed672aa0e4cf768f523e918
3
+ size 78930928
vocab/vectors.cfg ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "mode":"default"
3
+ }