Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- vi
|
4 |
+
pretty_name: Well-known Vietnamese people and corresponding abstracts in Wikipedia
|
5 |
+
source_datasets:
|
6 |
+
- original
|
7 |
+
size_categories:
|
8 |
+
- 1K<n<10K
|
9 |
+
tags:
|
10 |
+
- wikipedia
|
11 |
+
- images
|
12 |
+
- text
|
13 |
+
- LM
|
14 |
+
dataset_info:
|
15 |
+
features:
|
16 |
+
- name: image
|
17 |
+
dtype: image
|
18 |
+
- name: title
|
19 |
+
dtype: string
|
20 |
+
- name: text
|
21 |
+
dtype: string
|
22 |
+
license: mit
|
23 |
+
datasets:
|
24 |
+
- Seeker38/vietnamese_face_wiki
|
25 |
+
metrics:
|
26 |
+
- bleu
|
27 |
+
---
|
28 |
+
|
29 |
+
# Image Captioning - Fine Tune ViT-PhoBERT Model
|
30 |
+
|
31 |
+
This is ViT-PhoBERT fine tune Model on [vietnamese_face_wiki dataset](https://huggingface.co/datasets/Seeker38/vietnamese_face_wiki)
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
# How to use
|
36 |
+
|
37 |
+
import needed library
|
38 |
+
```python
|
39 |
+
import numpy as np
|
40 |
+
import pandas as pd
|
41 |
+
import torch
|
42 |
+
import matplotlib.pyplot as plt
|
43 |
+
from PIL import Image
|
44 |
+
from datasets import load_dataset
|
45 |
+
from torch.utils.data import Dataset
|
46 |
+
from transformers import AutoImageProcessor, AutoTokenizer, VisionEncoderDecoderModel
|
47 |
+
|
48 |
+
```
|
49 |
+
|
50 |
+
### load the dataset you need
|
51 |
+
```python
|
52 |
+
from datasets import load_dataset
|
53 |
+
|
54 |
+
dataset = load_dataset("Seeker38/augmented_vi_face_wiki", split="train")
|
55 |
+
```
|
56 |
+
|
57 |
+
### load the model
|
58 |
+
```python
|
59 |
+
from transformers import AutoImageProcessor, AutoTokenizer, VisionEncoderDecoderModel
|
60 |
+
model = VisionEncoderDecoderModel.from_pretrained("Seeker38/ViT_PhoBert_face_vi_wiki")
|
61 |
+
phobert_tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2", add_special_tokens=True)
|
62 |
+
|
63 |
+
if phobert_tokenizer.pad_token is None:
|
64 |
+
phobert_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
65 |
+
```
|
66 |
+
|
67 |
+
### contruct caption generate method
|
68 |
+
```python
|
69 |
+
def generate_caption(model, dataset, tokenizer, device, num_images=20, max_length=50):
|
70 |
+
model.eval()
|
71 |
+
|
72 |
+
sampled_indices = random.sample(range(len(dataset)), num_images)
|
73 |
+
sampled_images = [dataset[idx]['image'] for idx in sampled_indices]
|
74 |
+
pixel_values_list = []
|
75 |
+
|
76 |
+
for image in sampled_images:
|
77 |
+
image = image.resize((224, 224))
|
78 |
+
image = np.array(image, dtype=np.uint8)
|
79 |
+
image = torch.tensor(np.moveaxis(image, -1, 0), dtype=torch.float32)
|
80 |
+
pixel_values_list.append(image)
|
81 |
+
|
82 |
+
pixel_values = torch.stack(pixel_values_list).to(device)
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
outputs = model.generate(pixel_values, num_beams=10, max_length=max_length, early_stopping=True, length_penalty=1.0)
|
86 |
+
|
87 |
+
decoded_preds = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
88 |
+
|
89 |
+
# Display the images and their captions in a single column
|
90 |
+
fig, axs = plt.subplots(num_images, 2, figsize=(15, 5 * num_images))
|
91 |
+
|
92 |
+
for i, (image, caption) in enumerate(zip(sampled_images, decoded_preds)):
|
93 |
+
axs[i, 0].imshow(image)
|
94 |
+
axs[i, 0].axis('off')
|
95 |
+
axs[i, 1].text(0, 0.5, caption, wrap=True, fontsize=12)
|
96 |
+
axs[i, 1].axis('off')
|
97 |
+
|
98 |
+
plt.tight_layout()
|
99 |
+
|
100 |
+
# Save the plot to a local file
|
101 |
+
output_file = "/kaggle/working/generated_captions.png"
|
102 |
+
plt.savefig(output_file)
|
103 |
+
plt.show()
|
104 |
+
|
105 |
+
print(f"Plot saved as {output_file}")
|
106 |
+
```
|
107 |
+
|
108 |
+
### Run and enjoy
|
109 |
+
```python
|
110 |
+
generate_caption(model, dataset, phobert_tokenizer, device,5,70)
|
111 |
+
```
|