update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: lmv2-g-pan-143doc-06-12
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# lmv2-g-pan-143doc-06-12
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0443
|
18 |
+
- Dob Precision: 1.0
|
19 |
+
- Dob Recall: 1.0
|
20 |
+
- Dob F1: 1.0
|
21 |
+
- Dob Number: 27
|
22 |
+
- Fname Precision: 1.0
|
23 |
+
- Fname Recall: 0.9643
|
24 |
+
- Fname F1: 0.9818
|
25 |
+
- Fname Number: 28
|
26 |
+
- Name Precision: 0.9630
|
27 |
+
- Name Recall: 0.9630
|
28 |
+
- Name F1: 0.9630
|
29 |
+
- Name Number: 27
|
30 |
+
- Pan Precision: 1.0
|
31 |
+
- Pan Recall: 1.0
|
32 |
+
- Pan F1: 1.0
|
33 |
+
- Pan Number: 26
|
34 |
+
- Overall Precision: 0.9907
|
35 |
+
- Overall Recall: 0.9815
|
36 |
+
- Overall F1: 0.9860
|
37 |
+
- Overall Accuracy: 0.9978
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 4e-05
|
57 |
+
- train_batch_size: 1
|
58 |
+
- eval_batch_size: 1
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: constant
|
62 |
+
- num_epochs: 30
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Dob Precision | Dob Recall | Dob F1 | Dob Number | Fname Precision | Fname Recall | Fname F1 | Fname Number | Name Precision | Name Recall | Name F1 | Name Number | Pan Precision | Pan Recall | Pan F1 | Pan Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:---------------:|:------------:|:--------:|:------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
68 |
+
| 1.274 | 1.0 | 114 | 0.9098 | 0.9310 | 1.0 | 0.9643 | 27 | 0.1481 | 0.1429 | 0.1455 | 28 | 0.1639 | 0.3704 | 0.2273 | 27 | 0.8125 | 1.0 | 0.8966 | 26 | 0.4497 | 0.6204 | 0.5214 | 0.9143 |
|
69 |
+
| 0.7133 | 2.0 | 228 | 0.5771 | 0.9310 | 1.0 | 0.9643 | 27 | 0.2093 | 0.3214 | 0.2535 | 28 | 0.6562 | 0.7778 | 0.7119 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.6336 | 0.7685 | 0.6946 | 0.9443 |
|
70 |
+
| 0.4593 | 3.0 | 342 | 0.4018 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8276 | 0.8571 | 0.8421 | 28 | 0.9259 | 0.9259 | 0.9259 | 27 | 1.0 | 1.0 | 1.0 | 26 | 0.9273 | 0.9444 | 0.9358 | 0.9655 |
|
71 |
+
| 0.3011 | 4.0 | 456 | 0.2638 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.9286 | 0.9630 | 28 | 0.9259 | 0.9259 | 0.9259 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9630 | 0.9630 | 0.9630 | 0.9811 |
|
72 |
+
| 0.2209 | 5.0 | 570 | 0.2108 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8621 | 0.8929 | 0.8772 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9204 | 0.9630 | 0.9412 | 0.9811 |
|
73 |
+
| 0.1724 | 6.0 | 684 | 0.1671 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9286 | 0.9286 | 0.9286 | 28 | 0.8667 | 0.9630 | 0.9123 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9130 | 0.9722 | 0.9417 | 0.9844 |
|
74 |
+
| 0.1285 | 7.0 | 798 | 0.1754 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8929 | 0.8929 | 0.8929 | 28 | 0.9630 | 0.9630 | 0.9630 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9455 | 0.9630 | 0.9541 | 0.9788 |
|
75 |
+
| 0.0999 | 8.0 | 912 | 0.1642 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9615 | 0.8929 | 0.9259 | 28 | 0.9630 | 0.9630 | 0.9630 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9630 | 0.9630 | 0.9630 | 0.9811 |
|
76 |
+
| 0.0862 | 9.0 | 1026 | 0.1417 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.8966 | 0.9630 | 0.9286 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9292 | 0.9722 | 0.9502 | 0.9788 |
|
77 |
+
| 0.0722 | 10.0 | 1140 | 0.1317 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9630 | 0.9286 | 0.9455 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9545 | 0.9722 | 0.9633 | 0.9822 |
|
78 |
+
| 0.0748 | 11.0 | 1254 | 0.1220 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.8929 | 0.9434 | 28 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9720 | 0.9630 | 0.9674 | 0.9833 |
|
79 |
+
| 0.0549 | 12.0 | 1368 | 0.1157 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.8667 | 0.9630 | 0.9123 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9052 | 0.9722 | 0.9375 | 0.9811 |
|
80 |
+
| 0.0444 | 13.0 | 1482 | 0.1198 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.8929 | 0.9434 | 28 | 0.9630 | 0.9630 | 0.9630 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9720 | 0.9630 | 0.9674 | 0.9811 |
|
81 |
+
| 0.0371 | 14.0 | 1596 | 0.1082 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.8966 | 0.9630 | 0.9286 | 27 | 0.7879 | 1.0 | 0.8814 | 26 | 0.8824 | 0.9722 | 0.9251 | 0.9833 |
|
82 |
+
| 0.036 | 15.0 | 1710 | 0.1257 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9630 | 0.9286 | 0.9455 | 28 | 0.9630 | 0.9630 | 0.9630 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9459 | 0.9722 | 0.9589 | 0.9800 |
|
83 |
+
| 0.0291 | 16.0 | 1824 | 0.0930 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9643 | 0.9643 | 0.9643 | 28 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8667 | 1.0 | 0.9286 | 26 | 0.9386 | 0.9907 | 0.9640 | 0.9900 |
|
84 |
+
| 0.0267 | 17.0 | 1938 | 0.0993 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9286 | 0.9286 | 0.9286 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9375 | 0.9722 | 0.9545 | 0.9844 |
|
85 |
+
| 0.023 | 18.0 | 2052 | 0.1240 | 0.9643 | 1.0 | 0.9818 | 27 | 0.7941 | 0.9643 | 0.8710 | 28 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8387 | 1.0 | 0.9123 | 26 | 0.8843 | 0.9907 | 0.9345 | 0.9800 |
|
86 |
+
| 0.0379 | 19.0 | 2166 | 0.1154 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.9286 | 0.9630 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9545 | 0.9722 | 0.9633 | 0.9833 |
|
87 |
+
| 0.0199 | 20.0 | 2280 | 0.1143 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.9286 | 0.9630 | 28 | 0.8966 | 0.9630 | 0.9286 | 27 | 0.8667 | 1.0 | 0.9286 | 26 | 0.9292 | 0.9722 | 0.9502 | 0.9844 |
|
88 |
+
| 0.0256 | 21.0 | 2394 | 0.1175 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8667 | 0.9286 | 0.8966 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9211 | 0.9722 | 0.9459 | 0.9811 |
|
89 |
+
| 0.0388 | 22.0 | 2508 | 0.0964 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.9310 | 1.0 | 0.9643 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9217 | 0.9815 | 0.9507 | 0.9855 |
|
90 |
+
| 0.0334 | 23.0 | 2622 | 0.1186 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.9286 | 0.9630 | 28 | 1.0 | 0.9630 | 0.9811 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9633 | 0.9722 | 0.9677 | 0.9833 |
|
91 |
+
| 0.0134 | 24.0 | 2736 | 0.1193 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9630 | 0.9286 | 0.9455 | 28 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9633 | 0.9722 | 0.9677 | 0.9822 |
|
92 |
+
| 0.0157 | 25.0 | 2850 | 0.1078 | 1.0 | 1.0 | 1.0 | 27 | 0.9259 | 0.8929 | 0.9091 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9369 | 0.9630 | 0.9498 | 0.9833 |
|
93 |
+
| 0.0157 | 26.0 | 2964 | 0.0758 | 1.0 | 1.0 | 1.0 | 27 | 0.8929 | 0.8929 | 0.8929 | 28 | 1.0 | 1.0 | 1.0 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9459 | 0.9722 | 0.9589 | 0.9911 |
|
94 |
+
| 0.0096 | 27.0 | 3078 | 0.0766 | 1.0 | 1.0 | 1.0 | 27 | 0.8929 | 0.8929 | 0.8929 | 28 | 1.0 | 1.0 | 1.0 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9459 | 0.9722 | 0.9589 | 0.9889 |
|
95 |
+
| 0.0135 | 28.0 | 3192 | 0.0443 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 0.9643 | 0.9818 | 28 | 0.9630 | 0.9630 | 0.9630 | 27 | 1.0 | 1.0 | 1.0 | 26 | 0.9907 | 0.9815 | 0.9860 | 0.9978 |
|
96 |
+
| 0.012 | 29.0 | 3306 | 0.1153 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.8667 | 0.9630 | 0.9123 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9052 | 0.9722 | 0.9375 | 0.9822 |
|
97 |
+
| 0.0069 | 30.0 | 3420 | 0.1373 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9211 | 0.9722 | 0.9459 | 0.9777 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.20.0.dev0
|
103 |
+
- Pytorch 1.11.0+cu113
|
104 |
+
- Datasets 2.2.2
|
105 |
+
- Tokenizers 0.12.1
|