PEFT
English
SeanLee97 commited on
Commit
8c8ebe2
·
1 Parent(s): 020cf52

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -3
README.md CHANGED
@@ -1,9 +1,80 @@
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
 
3
  ---
4
- ## Training procedure
5
 
6
- ### Framework versions
7
 
 
8
 
9
- - PEFT 0.5.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
+ license: mit
4
+ datasets:
5
+ - multi_nli
6
+ - snli
7
+ language:
8
+ - en
9
+ metrics:
10
+ - spearmanr
11
  ---
 
12
 
 
13
 
14
+ # AnglE📐: Angle-optimized Text Embeddings
15
 
16
+ > It is Angle 📐, not Angel 👼.
17
+
18
+ 🔥 A New SOTA Model for Semantic Textual Similarity!
19
+
20
+ Github: https://github.com/SeanLee97/AnglE
21
+
22
+ <a href="https://arxiv.org/abs/2309.12871">
23
+ <img src="https://img.shields.io/badge/Arxiv-2306.06843-yellow.svg?style=flat-square" alt="https://arxiv.org/abs/2309.12871" />
24
+ </a>
25
+
26
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sick-r-1)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sick-r-1?p=angle-optimized-text-embeddings)
27
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts16)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts16?p=angle-optimized-text-embeddings)
28
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts15)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts15?p=angle-optimized-text-embeddings)
29
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts14)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts14?p=angle-optimized-text-embeddings)
30
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts13)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts13?p=angle-optimized-text-embeddings)
31
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts12)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts12?p=angle-optimized-text-embeddings)
32
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts-benchmark)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark?p=angle-optimized-text-embeddings)
33
+
34
+
35
+ **STS Results**
36
+
37
+
38
+ | Model | STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | Avg. |
39
+ | ------- |-------|-------|-------|-------|-------|--------------|-----------------|-------|
40
+ | [SeanLee97/angle-llama-7b-nli-20231027](https://huggingface.co/SeanLee97/angle-llama-7b-nli-20231027) | 78.68 | 90.58 | 85.49 | 89.56 | 86.91 | 88.92 | 81.18 | 85.90 |
41
+ | [SeanLee97/angle-llama-7b-nli-v2](https://huggingface.co/SeanLee97/angle-llama-7b-nli-v2) | 79.00 | 90.56 | 85.79 | 89.43 | 87.00 | 88.97 | 80.94 | **85.96** |
42
+
43
+
44
+
45
+ ## Usage
46
+
47
+ ```bash
48
+ python -m pip install -U angle-emb
49
+ ```
50
+
51
+ ```python
52
+ from angle_emb import AnglE, Prompts
53
+
54
+ # init
55
+ angle = AnglE.from_pretrained('NousResearch/Llama-2-13b-hf', pretrained_lora_path='SeanLee97/angle-llama-13b-nli', load_kbit=16, apply_bfloat16=False)
56
+
57
+ # set prompt
58
+ print('All predefined prompts:', Prompts.list_prompts())
59
+ angle.set_prompt(prompt=Prompts.A)
60
+ print('prompt:', angle.prompt)
61
+
62
+ # encode text
63
+ vec = angle.encode({'text': 'hello world'}, to_numpy=True)
64
+ print(vec)
65
+ vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
66
+ print(vecs)
67
+ ```
68
+
69
+ ## Citation
70
+
71
+ You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:
72
+
73
+ ```bibtex
74
+ @article{li2023angle,
75
+ title={AnglE-Optimized Text Embeddings},
76
+ author={Li, Xianming and Li, Jing},
77
+ journal={arXiv preprint arXiv:2309.12871},
78
+ year={2023}
79
+ }
80
+ ```