SeanLB commited on
Commit
110fda1
·
verified ·
1 Parent(s): ccd2d28

Training in progress, epoch 1

Browse files
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: layoutlm-funsd
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlm-funsd
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.7253
20
+ - Answer: {'precision': 0.70995670995671, 'recall': 0.8108776266996292, 'f1': 0.7570686670513561, 'number': 809}
21
+ - Header: {'precision': 0.3333333333333333, 'recall': 0.3445378151260504, 'f1': 0.33884297520661155, 'number': 119}
22
+ - Question: {'precision': 0.7931034482758621, 'recall': 0.8422535211267606, 'f1': 0.8169398907103825, 'number': 1065}
23
+ - Overall Precision: 0.7319
24
+ - Overall Recall: 0.7998
25
+ - Overall F1: 0.7643
26
+ - Overall Accuracy: 0.8025
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.8167 | 1.0 | 10 | 1.6314 | {'precision': 0.01308139534883721, 'recall': 0.011124845488257108, 'f1': 0.012024048096192386, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.14820143884892087, 'recall': 0.09671361502347418, 'f1': 0.11704545454545455, 'number': 1065} | 0.0810 | 0.0562 | 0.0664 | 0.3378 |
59
+ | 1.4882 | 2.0 | 20 | 1.3037 | {'precision': 0.1090686274509804, 'recall': 0.1100123609394314, 'f1': 0.10953846153846154, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.39293598233995586, 'recall': 0.5014084507042254, 'f1': 0.4405940594059406, 'number': 1065} | 0.2864 | 0.3126 | 0.2989 | 0.5571 |
60
+ | 1.1329 | 3.0 | 30 | 0.9825 | {'precision': 0.46, 'recall': 0.511742892459827, 'f1': 0.4844938560561732, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5010366275051832, 'recall': 0.6807511737089202, 'f1': 0.5772292993630574, 'number': 1065} | 0.4774 | 0.5715 | 0.5202 | 0.6939 |
61
+ | 0.8727 | 4.0 | 40 | 0.8129 | {'precision': 0.5495951417004049, 'recall': 0.6711990111248455, 'f1': 0.6043405676126878, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.626418152350081, 'recall': 0.7258215962441315, 'f1': 0.6724662896911702, 'number': 1065} | 0.5774 | 0.6603 | 0.6161 | 0.7443 |
62
+ | 0.6968 | 5.0 | 50 | 0.7437 | {'precision': 0.5873362445414847, 'recall': 0.6650185414091471, 'f1': 0.6237681159420291, 'number': 809} | {'precision': 0.1717171717171717, 'recall': 0.14285714285714285, 'f1': 0.15596330275229356, 'number': 119} | {'precision': 0.6337295690936107, 'recall': 0.8009389671361502, 'f1': 0.7075902115304852, 'number': 1065} | 0.5964 | 0.7065 | 0.6468 | 0.7722 |
63
+ | 0.5935 | 6.0 | 60 | 0.6977 | {'precision': 0.6307541625857003, 'recall': 0.796044499381953, 'f1': 0.7038251366120217, 'number': 809} | {'precision': 0.23170731707317074, 'recall': 0.15966386554621848, 'f1': 0.1890547263681592, 'number': 119} | {'precision': 0.7163920208152645, 'recall': 0.7755868544600939, 'f1': 0.7448151487826872, 'number': 1065} | 0.6600 | 0.7471 | 0.7009 | 0.7850 |
64
+ | 0.5186 | 7.0 | 70 | 0.6795 | {'precision': 0.6838709677419355, 'recall': 0.7861557478368356, 'f1': 0.7314548591144335, 'number': 809} | {'precision': 0.31958762886597936, 'recall': 0.2605042016806723, 'f1': 0.28703703703703703, 'number': 119} | {'precision': 0.7390557939914163, 'recall': 0.8084507042253521, 'f1': 0.7721973094170403, 'number': 1065} | 0.6971 | 0.7667 | 0.7302 | 0.7968 |
65
+ | 0.4576 | 8.0 | 80 | 0.6670 | {'precision': 0.6711340206185566, 'recall': 0.8046971569839307, 'f1': 0.7318718381112984, 'number': 809} | {'precision': 0.25225225225225223, 'recall': 0.23529411764705882, 'f1': 0.2434782608695652, 'number': 119} | {'precision': 0.7412765957446809, 'recall': 0.8178403755868544, 'f1': 0.7776785714285714, 'number': 1065} | 0.6871 | 0.7777 | 0.7296 | 0.8010 |
66
+ | 0.3975 | 9.0 | 90 | 0.6732 | {'precision': 0.6915584415584416, 'recall': 0.7898640296662547, 'f1': 0.7374495095210617, 'number': 809} | {'precision': 0.272, 'recall': 0.2857142857142857, 'f1': 0.27868852459016397, 'number': 119} | {'precision': 0.7510548523206751, 'recall': 0.8356807511737089, 'f1': 0.7911111111111111, 'number': 1065} | 0.6996 | 0.7842 | 0.7395 | 0.8006 |
67
+ | 0.3865 | 10.0 | 100 | 0.6818 | {'precision': 0.6941798941798942, 'recall': 0.8108776266996292, 'f1': 0.7480045610034207, 'number': 809} | {'precision': 0.28695652173913044, 'recall': 0.2773109243697479, 'f1': 0.2820512820512821, 'number': 119} | {'precision': 0.7790492957746479, 'recall': 0.8309859154929577, 'f1': 0.8041799182189914, 'number': 1065} | 0.7168 | 0.7898 | 0.7515 | 0.8007 |
68
+ | 0.3278 | 11.0 | 110 | 0.6996 | {'precision': 0.7050053248136315, 'recall': 0.8182941903584673, 'f1': 0.7574370709382151, 'number': 809} | {'precision': 0.325, 'recall': 0.3277310924369748, 'f1': 0.3263598326359833, 'number': 119} | {'precision': 0.7785527462946817, 'recall': 0.8384976525821596, 'f1': 0.8074141048824593, 'number': 1065} | 0.7226 | 0.7998 | 0.7592 | 0.8015 |
69
+ | 0.3097 | 12.0 | 120 | 0.7068 | {'precision': 0.7093649085037675, 'recall': 0.8145859085290482, 'f1': 0.7583429228998849, 'number': 809} | {'precision': 0.32456140350877194, 'recall': 0.31092436974789917, 'f1': 0.31759656652360513, 'number': 119} | {'precision': 0.7866666666666666, 'recall': 0.8309859154929577, 'f1': 0.8082191780821917, 'number': 1065} | 0.7292 | 0.7933 | 0.7599 | 0.8008 |
70
+ | 0.2962 | 13.0 | 130 | 0.7236 | {'precision': 0.7118463180362861, 'recall': 0.8244746600741656, 'f1': 0.7640320733104239, 'number': 809} | {'precision': 0.3217391304347826, 'recall': 0.31092436974789917, 'f1': 0.3162393162393162, 'number': 119} | {'precision': 0.7907801418439716, 'recall': 0.8375586854460094, 'f1': 0.8134974920200638, 'number': 1065} | 0.7321 | 0.8008 | 0.7649 | 0.8050 |
71
+ | 0.2711 | 14.0 | 140 | 0.7240 | {'precision': 0.7082429501084598, 'recall': 0.8071693448702101, 'f1': 0.754477180820335, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3445378151260504, 'f1': 0.33884297520661155, 'number': 119} | {'precision': 0.7931034482758621, 'recall': 0.8422535211267606, 'f1': 0.8169398907103825, 'number': 1065} | 0.7312 | 0.7983 | 0.7633 | 0.8017 |
72
+ | 0.2721 | 15.0 | 150 | 0.7253 | {'precision': 0.70995670995671, 'recall': 0.8108776266996292, 'f1': 0.7570686670513561, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3445378151260504, 'f1': 0.33884297520661155, 'number': 119} | {'precision': 0.7931034482758621, 'recall': 0.8422535211267606, 'f1': 0.8169398907103825, 'number': 1065} | 0.7319 | 0.7998 | 0.7643 | 0.8025 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.53.0
78
+ - Pytorch 2.6.0+cu124
79
+ - Datasets 3.6.0
80
+ - Tokenizers 0.21.2
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LayoutLMForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "id2label": {
10
+ "0": "O",
11
+ "1": "B-HEADER",
12
+ "2": "I-HEADER",
13
+ "3": "B-QUESTION",
14
+ "4": "I-QUESTION",
15
+ "5": "B-ANSWER",
16
+ "6": "I-ANSWER"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "B-ANSWER": 5,
22
+ "B-HEADER": 1,
23
+ "B-QUESTION": 3,
24
+ "I-ANSWER": 6,
25
+ "I-HEADER": 2,
26
+ "I-QUESTION": 4,
27
+ "O": 0
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_2d_position_embeddings": 1024,
31
+ "max_position_embeddings": 512,
32
+ "model_type": "layoutlm",
33
+ "num_attention_heads": 12,
34
+ "num_hidden_layers": 12,
35
+ "output_past": true,
36
+ "pad_token_id": 0,
37
+ "position_embedding_type": "absolute",
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.53.0",
40
+ "type_vocab_size": 2,
41
+ "use_cache": true,
42
+ "vocab_size": 30522
43
+ }
logs/events.out.tfevents.1751938684.7a9bc2c7ed3e.2194.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0af8117fa961570b460b43f4620b0ad74fb7adb2da0c65c27e0fbccc53552670
3
+ size 16149
logs/events.out.tfevents.1751940015.7a9bc2c7ed3e.19205.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6e5c213d8744385f505862580cdbcda009c59227d2df591b073a32fa05cf3f8
3
+ size 5928
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d95fb3ac4eba2df4fc8a90038fca061ff5236adb4c7c044a51b48b2c55eb5ac
3
+ size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "extra_special_tokens": {},
57
+ "mask_token": "[MASK]",
58
+ "model_max_length": 512,
59
+ "never_split": null,
60
+ "only_label_first_subword": true,
61
+ "pad_token": "[PAD]",
62
+ "pad_token_box": [
63
+ 0,
64
+ 0,
65
+ 0,
66
+ 0
67
+ ],
68
+ "pad_token_label": -100,
69
+ "processor_class": "LayoutLMv2Processor",
70
+ "sep_token": "[SEP]",
71
+ "sep_token_box": [
72
+ 1000,
73
+ 1000,
74
+ 1000,
75
+ 1000
76
+ ],
77
+ "strip_accents": null,
78
+ "tokenize_chinese_chars": true,
79
+ "tokenizer_class": "LayoutLMv2Tokenizer",
80
+ "unk_token": "[UNK]"
81
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd2c2fe385e999ddef639494141bfa60744af951e58f6f6c06405a7336242a2c
3
+ size 5368
vocab.txt ADDED
The diff for this file is too large to render. See raw diff