ScoobyDew2 commited on
Commit
7d6b8b8
1 Parent(s): b8e1308

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 237.11 +/- 36.57
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ac00dd4bd00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ac00dd4bd90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ac00dd4be20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ac00dd4beb0>", "_build": "<function ActorCriticPolicy._build at 0x7ac00dd4bf40>", "forward": "<function ActorCriticPolicy.forward at 0x7ac00db58040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ac00db580d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ac00db58160>", "_predict": "<function ActorCriticPolicy._predict at 0x7ac00db581f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ac00db58280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ac00db58310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ac00db583a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ac00dce7080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716859433585555128, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMWOD5Qtp0+SJ5bvjPDAL7qsEu9Mg8/OwAAAAAAAAAApkVHvvYpsj9eFiu/xJiWvqWAb77iFCG+AAAAAAAAAABm5+i9r9UDP8LLrT12eRu+sQm8PLykiz0AAAAAAAAAAIDvp707HcU+xAEmvW+UhL7ruJm870O4vAAAAAAAAAAApprJvex57rkZMoe73kP9NeX9hrpu6546AACAPwAAgD+a41G8Kbh8ulJi4Trv4pk1Lao2un5QA7oAAIA/AACAPzNLFzsfxcw4Fnyxu/BUiTbzONo76kEDtgAAgD8AAIA/jTzVPel+ij5lva+9uyEUvkUswjxf5qs9AAAAAAAAAADNXH89XBMaumcyqLtVR044obi9Oo4+TDgAAIA/AACAP0DwhD2P1ma6yN98OP6DmjRuJUU7G+KRtwAAgD8AAIA/AEWNvVzXGboOToq44Pk/s3CthbudVaQ3AACAPwAAgD+aU7E9uI7SubvECbsG4zK2+tECO27jJjoAAAAAAACAP8C/lj0pzCa6geqaO3X1uDdRIg47JqqWNgAAgD8AAIA/IyCWPmW3hj/efIQ+kn+GvgELZD4q+1i9AAAAAAAAAACaveI7KfB0uqWqGbxfh0s2e18PN7vwurUAAIA/AACAPzOq9LzDHWm6u29NOqZcNDVbHCW7YChxuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRQ+MZP2wqMAWyUTegDjAF0lEdAm03hoEjgRHV9lChoBkdASqYbyYoiLWgHTT8BaAhHQJtSTDcdo391fZQoaAZHQGKRj2rXDm9oB03oA2gIR0CbVvJe3QUpdX2UKGgGR0BeWO4oZydXaAdN6ANoCEdAm1fJ9RaX8nV9lChoBkdAYOQJiRW912gHTegDaAhHQJtbKN96Tnt1fZQoaAZHQFstTpxFRYRoB03oA2gIR0CbW1WkrPMTdX2UKGgGR0BgGpm/WUbDaAdN6ANoCEdAm2PKVII4VHV9lChoBkdAYrGjnmq5smgHTegDaAhHQJtlmUpuuRt1fZQoaAZHQGPYLtmcvuhoB03oA2gIR0CbZ6PqcEvCdX2UKGgGR0BiKuVRk3CLaAdN6ANoCEdAm33Pf0mMO3V9lChoBkdAZI1spG4I8mgHTegDaAhHQJt+iwY+B6N1fZQoaAZHQGKOl9roGINoB03oA2gIR0Cbf76/7BO6dX2UKGgGR0Bhfxs/IKc/aAdN6ANoCEdAm4fmvfTCtXV9lChoBkdAS38tRNyo42gHS8poCEdAm4lMLfDUE3V9lChoBkdAbtCacZtNz2gHTV8CaAhHQJuQvQw9JSR1fZQoaAZHQGNlqmCROlBoB03oA2gIR0CbkRyvcJt0dX2UKGgGR0BiGq925hBraAdN6ANoCEdAm5oWP91loXV9lChoBkdAZjvlK9PDYWgHTegDaAhHQJuczImw7kp1fZQoaAZHQGSR2TxG2CxoB03oA2gIR0Cbon+G47RwdX2UKGgGR0BlVBMxoIv8aAdN6ANoCEdAm6YjX8O09nV9lChoBkdAYbpoHLRrrWgHTegDaAhHQJuqynn+yZ91fZQoaAZHQGHcD8cdYGNoB03oA2gIR0CbrbJGvwEydX2UKGgGR0BkD1rVOKwZaAdN6ANoCEdAm63bCiyprHV9lChoBkdAY74DIzWPLmgHTegDaAhHQJuzm0UoKD11fZQoaAZHQGYU+vIOpbVoB03oA2gIR0CbtKTx5LRKdX2UKGgGR0BaAUtEofCAaAdN6ANoCEdAm7XE1hsqKHV9lChoBkdAYJ4jtXxOL2gHTegDaAhHQJvLtX2dupF1fZQoaAZHQF2R5n13+uNoB03oA2gIR0CbzTxri2lVdX2UKGgGR0Bi/4A2hqTKaAdN6ANoCEdAm9bkbcXWOXV9lChoBkdAYNE26TW5H2gHTegDaAhHQJvYRxjriVB1fZQoaAZHQGKAP0I1LrZoB03oA2gIR0Cb39xZ+x4ZdX2UKGgGR0BkPppi7TUiaAdN6ANoCEdAm+A4is4kvHV9lChoBkdAMvBqbjLjgmgHS9JoCEdAm+TtcB2fTXV9lChoBkdAZV2V3Ux20WgHTegDaAhHQJvnzUc4o7V1fZQoaAZHQGNVMdkrf+FoB03oA2gIR0Cb6eHgP3BYdX2UKGgGR0Bk3GoBJZntaAdN6ANoCEdAm+8BzV+ZxHV9lChoBkdAYRZVbzK9wmgHTegDaAhHQJvzKQYDT0B1fZQoaAZHQGG9Vb7j1f5oB03oA2gIR0Cb+KulGgBcdX2UKGgGR0BhINtO2y9maAdN6ANoCEdAm/xOl9BrvnV9lChoBkdAY+rL+xW1dGgHTegDaAhHQJv8ikep4r11fZQoaAZHQGERjbJwKjVoB03oA2gIR0CcBoirT6SDdX2UKGgGR0AwEw4sEq2CaAdNUAFoCEdAnAeYDLbHqHV9lChoBkdAY/+8V58jRmgHTegDaAhHQJwIKKoAGSp1fZQoaAZHQGUnS/bj94xoB03oA2gIR0CcCfYZVGTcdX2UKGgGR0Bi8k2R7qptaAdN6ANoCEdAnA2pWBBiTnV9lChoBkdAYWQEs8PnS2gHTegDaAhHQJwgf30wrUd1fZQoaAZHQGI2EuHvc8FoB03oA2gIR0CcKIY9gWrPdX2UKGgGR0AnxP557gKnaAdNCwFoCEdAnCqSZv1lG3V9lChoBkdAYGGOavzOHGgHTegDaAhHQJwxb8HfMwF1fZQoaAZHQGJewj+rELpoB03oA2gIR0CcMdA+6iCbdX2UKGgGR0BhUjKvFFUiaAdN6ANoCEdAnDgiblRxcXV9lChoBkdAZS+O9WZJCmgHTegDaAhHQJw8HscABDJ1fZQoaAZHQGJ7MeOn2qVoB03oA2gIR0CcPvSXt0FKdX2UKGgGR0BHfRLsa86FaAdNEgFoCEdAnEX+JpFkQXV9lChoBkdAYWk5OrQw9WgHTegDaAhHQJxIyJXQtz11fZQoaAZHQGXciFsYVItoB03oA2gIR0CcTogyuZCwdX2UKGgGR0BkHKqCHymRaAdN6ANoCEdAnFJ4q0+kg3V9lChoBkdAZnj9tuUD+2gHTegDaAhHQJxSq2SdOIt1fZQoaAZHQGYGL7wazeJoB03oA2gIR0CcWt1rIo3KdX2UKGgGR0BNBKgIyCWeaAdNDAFoCEdAnFvHGKhtcnV9lChoBkdAYnTb2USqVGgHTegDaAhHQJxb3UqhDgJ1fZQoaAZHQGVrA13t8eFoB03oA2gIR0CcXFXiBGx2dX2UKGgGR0Bh0aMR6F/QaAdN6ANoCEdAnGJVPacqfHV9lChoBkdAXjLCMxXXAmgHTegDaAhHQJxj66shgVp1fZQoaAZHQGQEgoPTXrdoB03oA2gIR0CcgY/KyOaOdX2UKGgGR0BlLNnAZbY9aAdN6ANoCEdAnIP/TgEU03V9lChoBkdATLFFDv3JxWgHS99oCEdAnIVc+u/1x3V9lChoBkdAZVyWtU4rBmgHTegDaAhHQJyK+uwHJLd1fZQoaAZHQGLxQLux8lZoB03oA2gIR0Ccj+W1+iJwdX2UKGgGR0BiihNZeRgaaAdN6ANoCEdAnJKlZX+2mnV9lChoBkdAYAcLwWnCO2gHTegDaAhHQJyUhZZB9kV1fZQoaAZHQDfKqn3ta6loB0v6aAhHQJyZFC5VfeF1fZQoaAZHQGHR0gKWszVoB03oA2gIR0Ccm0mj0tiAdX2UKGgGR0AU5tk4FRpDaAdL2WgIR0CcnPqBVdX1dX2UKGgGR0BkmGQCCBf8aAdN6ANoCEdAnKTzPSlWO3V9lChoBkdAZvCkWykbgmgHTegDaAhHQJyotqcmShd1fZQoaAZHQGRCdLpRoAZoB03oA2gIR0CcqONHYpUhdX2UKGgGR8AX9IXj2i+MaAdNCQFoCEdAnKvMO9WZJHV9lChoBkdAZX5BTn7pFGgHTegDaAhHQJyvW0x/NJR1fZQoaAZHQGF2Dl5nlGRoB03oA2gIR0CcsAWEK3NLdX2UKGgGR0BlgpqdpZfVaAdN6ANoCEdAnLAUgr6LwXV9lChoBkdAYIRoq0+kg2gHTegDaAhHQJywbgYP5Hp1fZQoaAZHQGFjBIOH311oB03oA2gIR0CctcMSbpeNdX2UKGgGR0BLPTM7lq8EaAdNFwFoCEdAnLeVhXr+pHV9lChoBkdAY450SRKYiWgHTegDaAhHQJzPtl8PWhB1fZQoaAZHQGJZyU1Q66toB03oA2gIR0Cc0o+TNdJKdX2UKGgGR0Biqd3Sro4daAdN6ANoCEdAnNQ5aaCtinV9lChoBkdAb98lOXVslGgHTbMBaAhHQJzXaL0jC551fZQoaAZHQGPjwFs54npoB03oA2gIR0Cc455+6RQrdX2UKGgGR0BiFOKqGUOeaAdN6ANoCEdAnOXXIhhYvHV9lChoBkdAZpgLMLWqcWgHTegDaAhHQJztBGtp22Z1fZQoaAZHQFyvxDb8FZBoB03oA2gIR0Cc7oOclPaddX2UKGgGR0BfNFdHDrJKaAdN6ANoCEdAnPWMXvYvnXV9lChoBkdAXY/apPykK2gHTegDaAhHQJz5S23KB/Z1fZQoaAZHQGHaEuHvc8FoB03oA2gIR0CdAQcOby6MdX2UKGgGR0BfCa3y7PIGaAdN6ANoCEdAnQHffbblBHV9lChoBkdAYQ23QUpNK2gHTegDaAhHQJ0B8hW5pal1fZQoaAZHQGTAme+VTrFoB03oA2gIR0CdAlpvgm7bdX2UKGgGR0Bg+Ot6ol2NaAdN6ANoCEdAnQsNSydFv3V9lChoBkdAXsiaVlf7amgHTegDaAhHQJ0N+33Hq/x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3614509b632e989af319ca3efe00985aa440c70735024b1f2f3ad2a666e39b73
3
+ size 148080
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ac00dd4bd00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ac00dd4bd90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ac00dd4be20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ac00dd4beb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ac00dd4bf40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ac00db58040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ac00db580d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ac00db58160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ac00db581f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ac00db58280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ac00db58310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ac00db583a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ac00dce7080>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1716859433585555128,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMWOD5Qtp0+SJ5bvjPDAL7qsEu9Mg8/OwAAAAAAAAAApkVHvvYpsj9eFiu/xJiWvqWAb77iFCG+AAAAAAAAAABm5+i9r9UDP8LLrT12eRu+sQm8PLykiz0AAAAAAAAAAIDvp707HcU+xAEmvW+UhL7ruJm870O4vAAAAAAAAAAApprJvex57rkZMoe73kP9NeX9hrpu6546AACAPwAAgD+a41G8Kbh8ulJi4Trv4pk1Lao2un5QA7oAAIA/AACAPzNLFzsfxcw4Fnyxu/BUiTbzONo76kEDtgAAgD8AAIA/jTzVPel+ij5lva+9uyEUvkUswjxf5qs9AAAAAAAAAADNXH89XBMaumcyqLtVR044obi9Oo4+TDgAAIA/AACAP0DwhD2P1ma6yN98OP6DmjRuJUU7G+KRtwAAgD8AAIA/AEWNvVzXGboOToq44Pk/s3CthbudVaQ3AACAPwAAgD+aU7E9uI7SubvECbsG4zK2+tECO27jJjoAAAAAAACAP8C/lj0pzCa6geqaO3X1uDdRIg47JqqWNgAAgD8AAIA/IyCWPmW3hj/efIQ+kn+GvgELZD4q+1i9AAAAAAAAAACaveI7KfB0uqWqGbxfh0s2e18PN7vwurUAAIA/AACAPzOq9LzDHWm6u29NOqZcNDVbHCW7YChxuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRQ+MZP2wqMAWyUTegDjAF0lEdAm03hoEjgRHV9lChoBkdASqYbyYoiLWgHTT8BaAhHQJtSTDcdo391fZQoaAZHQGKRj2rXDm9oB03oA2gIR0CbVvJe3QUpdX2UKGgGR0BeWO4oZydXaAdN6ANoCEdAm1fJ9RaX8nV9lChoBkdAYOQJiRW912gHTegDaAhHQJtbKN96Tnt1fZQoaAZHQFstTpxFRYRoB03oA2gIR0CbW1WkrPMTdX2UKGgGR0BgGpm/WUbDaAdN6ANoCEdAm2PKVII4VHV9lChoBkdAYrGjnmq5smgHTegDaAhHQJtlmUpuuRt1fZQoaAZHQGPYLtmcvuhoB03oA2gIR0CbZ6PqcEvCdX2UKGgGR0BiKuVRk3CLaAdN6ANoCEdAm33Pf0mMO3V9lChoBkdAZI1spG4I8mgHTegDaAhHQJt+iwY+B6N1fZQoaAZHQGKOl9roGINoB03oA2gIR0Cbf76/7BO6dX2UKGgGR0Bhfxs/IKc/aAdN6ANoCEdAm4fmvfTCtXV9lChoBkdAS38tRNyo42gHS8poCEdAm4lMLfDUE3V9lChoBkdAbtCacZtNz2gHTV8CaAhHQJuQvQw9JSR1fZQoaAZHQGNlqmCROlBoB03oA2gIR0CbkRyvcJt0dX2UKGgGR0BiGq925hBraAdN6ANoCEdAm5oWP91loXV9lChoBkdAZjvlK9PDYWgHTegDaAhHQJuczImw7kp1fZQoaAZHQGSR2TxG2CxoB03oA2gIR0Cbon+G47RwdX2UKGgGR0BlVBMxoIv8aAdN6ANoCEdAm6YjX8O09nV9lChoBkdAYbpoHLRrrWgHTegDaAhHQJuqynn+yZ91fZQoaAZHQGHcD8cdYGNoB03oA2gIR0CbrbJGvwEydX2UKGgGR0BkD1rVOKwZaAdN6ANoCEdAm63bCiyprHV9lChoBkdAY74DIzWPLmgHTegDaAhHQJuzm0UoKD11fZQoaAZHQGYU+vIOpbVoB03oA2gIR0CbtKTx5LRKdX2UKGgGR0BaAUtEofCAaAdN6ANoCEdAm7XE1hsqKHV9lChoBkdAYJ4jtXxOL2gHTegDaAhHQJvLtX2dupF1fZQoaAZHQF2R5n13+uNoB03oA2gIR0CbzTxri2lVdX2UKGgGR0Bi/4A2hqTKaAdN6ANoCEdAm9bkbcXWOXV9lChoBkdAYNE26TW5H2gHTegDaAhHQJvYRxjriVB1fZQoaAZHQGKAP0I1LrZoB03oA2gIR0Cb39xZ+x4ZdX2UKGgGR0BkPppi7TUiaAdN6ANoCEdAm+A4is4kvHV9lChoBkdAMvBqbjLjgmgHS9JoCEdAm+TtcB2fTXV9lChoBkdAZV2V3Ux20WgHTegDaAhHQJvnzUc4o7V1fZQoaAZHQGNVMdkrf+FoB03oA2gIR0Cb6eHgP3BYdX2UKGgGR0Bk3GoBJZntaAdN6ANoCEdAm+8BzV+ZxHV9lChoBkdAYRZVbzK9wmgHTegDaAhHQJvzKQYDT0B1fZQoaAZHQGG9Vb7j1f5oB03oA2gIR0Cb+KulGgBcdX2UKGgGR0BhINtO2y9maAdN6ANoCEdAm/xOl9BrvnV9lChoBkdAY+rL+xW1dGgHTegDaAhHQJv8ikep4r11fZQoaAZHQGERjbJwKjVoB03oA2gIR0CcBoirT6SDdX2UKGgGR0AwEw4sEq2CaAdNUAFoCEdAnAeYDLbHqHV9lChoBkdAY/+8V58jRmgHTegDaAhHQJwIKKoAGSp1fZQoaAZHQGUnS/bj94xoB03oA2gIR0CcCfYZVGTcdX2UKGgGR0Bi8k2R7qptaAdN6ANoCEdAnA2pWBBiTnV9lChoBkdAYWQEs8PnS2gHTegDaAhHQJwgf30wrUd1fZQoaAZHQGI2EuHvc8FoB03oA2gIR0CcKIY9gWrPdX2UKGgGR0AnxP557gKnaAdNCwFoCEdAnCqSZv1lG3V9lChoBkdAYGGOavzOHGgHTegDaAhHQJwxb8HfMwF1fZQoaAZHQGJewj+rELpoB03oA2gIR0CcMdA+6iCbdX2UKGgGR0BhUjKvFFUiaAdN6ANoCEdAnDgiblRxcXV9lChoBkdAZS+O9WZJCmgHTegDaAhHQJw8HscABDJ1fZQoaAZHQGJ7MeOn2qVoB03oA2gIR0CcPvSXt0FKdX2UKGgGR0BHfRLsa86FaAdNEgFoCEdAnEX+JpFkQXV9lChoBkdAYWk5OrQw9WgHTegDaAhHQJxIyJXQtz11fZQoaAZHQGXciFsYVItoB03oA2gIR0CcTogyuZCwdX2UKGgGR0BkHKqCHymRaAdN6ANoCEdAnFJ4q0+kg3V9lChoBkdAZnj9tuUD+2gHTegDaAhHQJxSq2SdOIt1fZQoaAZHQGYGL7wazeJoB03oA2gIR0CcWt1rIo3KdX2UKGgGR0BNBKgIyCWeaAdNDAFoCEdAnFvHGKhtcnV9lChoBkdAYnTb2USqVGgHTegDaAhHQJxb3UqhDgJ1fZQoaAZHQGVrA13t8eFoB03oA2gIR0CcXFXiBGx2dX2UKGgGR0Bh0aMR6F/QaAdN6ANoCEdAnGJVPacqfHV9lChoBkdAXjLCMxXXAmgHTegDaAhHQJxj66shgVp1fZQoaAZHQGQEgoPTXrdoB03oA2gIR0CcgY/KyOaOdX2UKGgGR0BlLNnAZbY9aAdN6ANoCEdAnIP/TgEU03V9lChoBkdATLFFDv3JxWgHS99oCEdAnIVc+u/1x3V9lChoBkdAZVyWtU4rBmgHTegDaAhHQJyK+uwHJLd1fZQoaAZHQGLxQLux8lZoB03oA2gIR0Ccj+W1+iJwdX2UKGgGR0BiihNZeRgaaAdN6ANoCEdAnJKlZX+2mnV9lChoBkdAYAcLwWnCO2gHTegDaAhHQJyUhZZB9kV1fZQoaAZHQDfKqn3ta6loB0v6aAhHQJyZFC5VfeF1fZQoaAZHQGHR0gKWszVoB03oA2gIR0Ccm0mj0tiAdX2UKGgGR0AU5tk4FRpDaAdL2WgIR0CcnPqBVdX1dX2UKGgGR0BkmGQCCBf8aAdN6ANoCEdAnKTzPSlWO3V9lChoBkdAZvCkWykbgmgHTegDaAhHQJyotqcmShd1fZQoaAZHQGRCdLpRoAZoB03oA2gIR0CcqONHYpUhdX2UKGgGR8AX9IXj2i+MaAdNCQFoCEdAnKvMO9WZJHV9lChoBkdAZX5BTn7pFGgHTegDaAhHQJyvW0x/NJR1fZQoaAZHQGF2Dl5nlGRoB03oA2gIR0CcsAWEK3NLdX2UKGgGR0BlgpqdpZfVaAdN6ANoCEdAnLAUgr6LwXV9lChoBkdAYIRoq0+kg2gHTegDaAhHQJywbgYP5Hp1fZQoaAZHQGFjBIOH311oB03oA2gIR0CctcMSbpeNdX2UKGgGR0BLPTM7lq8EaAdNFwFoCEdAnLeVhXr+pHV9lChoBkdAY450SRKYiWgHTegDaAhHQJzPtl8PWhB1fZQoaAZHQGJZyU1Q66toB03oA2gIR0Cc0o+TNdJKdX2UKGgGR0Biqd3Sro4daAdN6ANoCEdAnNQ5aaCtinV9lChoBkdAb98lOXVslGgHTbMBaAhHQJzXaL0jC551fZQoaAZHQGPjwFs54npoB03oA2gIR0Cc455+6RQrdX2UKGgGR0BiFOKqGUOeaAdN6ANoCEdAnOXXIhhYvHV9lChoBkdAZpgLMLWqcWgHTegDaAhHQJztBGtp22Z1fZQoaAZHQFyvxDb8FZBoB03oA2gIR0Cc7oOclPaddX2UKGgGR0BfNFdHDrJKaAdN6ANoCEdAnPWMXvYvnXV9lChoBkdAXY/apPykK2gHTegDaAhHQJz5S23KB/Z1fZQoaAZHQGHaEuHvc8FoB03oA2gIR0CdAQcOby6MdX2UKGgGR0BfCa3y7PIGaAdN6ANoCEdAnQHffbblBHV9lChoBkdAYQ23QUpNK2gHTegDaAhHQJ0B8hW5pal1fZQoaAZHQGTAme+VTrFoB03oA2gIR0CdAlpvgm7bdX2UKGgGR0Bg+Ot6ol2NaAdN6ANoCEdAnQsNSydFv3V9lChoBkdAXsiaVlf7amgHTegDaAhHQJ0N+33Hq/x1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2c1090e79d6e74140a3d6a09050091a217bb34045da81a23fa81005988a8971
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:782b9728a44ce341c5d67ac5f82e41de1aa46a6dd37775d7998e9944c2f615ca
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (193 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 237.11464139999998, "std_reward": 36.573475473550324, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-28T01:48:16.849718"}