ppo-LunarLander-v2 / config.json
ScoobyDew2's picture
Upload PPO LunarLander-v2 trained agent
a693561 verified
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b143616c4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b143616c550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b143616c5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b143616c670>", "_build": "<function ActorCriticPolicy._build at 0x7b143616c700>", "forward": "<function ActorCriticPolicy.forward at 0x7b143616c790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b143616c820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b143616c8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b143616c940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b143616c9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b143616ca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b143616caf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b1436116900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1503232, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716917051098470062, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIAlN77+rSU/Xm4hPlcxmL4WWLO8NWnePAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.002154666666666749, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6kZOzposaMAWyUS+SMAXSUR0CgkVGbCrLhdX2UKGgGR0Bv+Bc1O0swaAdNAgFoCEdAoJIGTq0MPXV9lChoBkdAU4TijtXxOWgHS79oCEdAoJKWm+Cbt3V9lChoBkdAdDl9zOoo/mgHS+VoCEdAoJMXkNnXd3V9lChoBkdAcQ7lSjxkNGgHTR4BaAhHQKCTpvHcUM51fZQoaAZHQG/aAiml67doB0v4aAhHQKCUH+m3vx91fZQoaAZHQHJipLdvbXZoB0vqaAhHQKCUlt3wCr91fZQoaAZHQHBjJ9uxbB5oB0vcaAhHQKCU/wz+FUR1fZQoaAZHQHMrJ5eJHiFoB0vWaAhHQKCVaoF3Y+V1fZQoaAZHQHMjO7+T/yZoB0vUaAhHQKCV0n2Iwdt1fZQoaAZHQHEvNBBzFMtoB0v0aAhHQKCWSEKVpsZ1fZQoaAZHQG3os9jgAIZoB0vbaAhHQKCWufHxSYR1fZQoaAZHQHE3Fn27FsJoB0vkaAhHQKCXKjwhGH51fZQoaAZHQHKeITCcf/5oB0vuaAhHQKCXoKMvRJF1fZQoaAZHQG3X21D0DlpoB0v0aAhHQKCYFrFfiP11fZQoaAZHQHAldvS+g15oB0voaAhHQKCYjDst03h1fZQoaAZHQHKhBvaURnRoB0vgaAhHQKCbcScslLR1fZQoaAZHQHJ673PAwf1oB00AAWgIR0Cgm+3pwCKadX2UKGgGR0ByswbEP1+RaAdL7GgIR0CgnGDWbwz+dX2UKGgGR0Bu4Kr3j+72aAdL8GgIR0CgnN2RRuTBdX2UKGgGR0BwktyU9pyqaAdLz2gIR0CgnUFOXVsldX2UKGgGR0Bw9LIxQBPsaAdL4GgIR0Cgna6GHpKSdX2UKGgGR0BwgslQdjoZaAdLy2gIR0CgnhFLnLaFdX2UKGgGR0BwBr9ZRsMzaAdL42gIR0Cgno6WX1J2dX2UKGgGR0BzXmT2WY4RaAdL2GgIR0Cgnvy1Vo6CdX2UKGgGR0BwSOYa5wwTaAdL3GgIR0Cgn2ca4tpVdX2UKGgGR0By3hFuvUz9aAdL3WgIR0Cgn89IGyHEdX2UKGgGR0ByswkAxSHeaAdL6GgIR0CgoEGtp22YdX2UKGgGR0BzYZpXZGrkaAdNKAFoCEdAoKDYk1Mue3V9lChoBkdAbsag8KXv6WgHTRcBaAhHQKChZMuez2R1fZQoaAZHQHCjzjm0VrRoB00LAWgIR0CgoeanaWX1dX2UKGgGR0BxxupOvdM1aAdNBAFoCEdAoKJnck+otXV9lChoBkdAb0Co3Jgb62gHTRIBaAhHQKCi9+o99tx1fZQoaAZHQHEMesLfDUFoB0vmaAhHQKCmA85jpcJ1fZQoaAZHQHCT4+OfdyloB0v6aAhHQKCmf1dxAB11fZQoaAZHQG9k+yZ8a4toB0vxaAhHQKCnElUIcBF1fZQoaAZHQHKxcSsbNr1oB00zAWgIR0Cgp+vCl7+ldX2UKGgGR0BtWYN7SiM6aAdNDAFoCEdAoKia+lCTlnV9lChoBkdAb8qm5UcXFmgHS+JoCEdAoKkyq6vq1XV9lChoBkdAcojltj0+T2gHS/ZoCEdAoKnQtFrmAHV9lChoBkdAcriFcIJJG2gHS89oCEdAoKpcbm2b5XV9lChoBkdAbhfMPBi1A2gHS+NoCEdAoKr3CEYfn3V9lChoBkdAcsWTZxrBTGgHS9toCEdAoKuaagElmnV9lChoBkdAc0x4tYjjaWgHS95oCEdAoKwyLqD9O3V9lChoBkdAcbtc6eXiSGgHTRoBaAhHQKCs/SCOFQF1fZQoaAZHQHKaPYraufVoB0vHaAhHQKCtnXLeQ+51fZQoaAZHQHLBKyv9tMxoB00uAWgIR0CgrkLL6k6+dX2UKGgGR0BzZTGecx0uaAdL/WgIR0CgrsDm0VrRdX2UKGgGR0BxBdYFJQLvaAdNAgFoCEdAoK9BfF72MHV9lChoBkdAbrtTOPeYUmgHS9RoCEdAoK+tWhh6SnV9lChoBkdActaqkM1CPmgHTSoBaAhHQKCypwgkkbB1fZQoaAZHQHMwqR2bG3poB0v/aAhHQKCzIryUcGV1fZQoaAZHQHHf2TLW7OFoB00gAWgIR0Cgs7WdEsredX2UKGgGR0BVSb8iwB5paAdLtWgIR0CgtA3L3bmEdX2UKGgGR0ByluwyIpH7aAdL9WgIR0CgtIemvW6LdX2UKGgGR0BysyxdIGyHaAdNEAFoCEdAoLUhkNFz+3V9lChoBkdAby6+QlruY2gHTQYBaAhHQKC1pmkFfRh1fZQoaAZHQHDn1wgkkbBoB0vQaAhHQKC2Cs6q8151fZQoaAZHQG3Gvegte2NoB0vRaAhHQKC2b7XQMQV1fZQoaAZHQHOHOzposZpoB00aAWgIR0CgtvwkX1rZdX2UKGgGR0Bw10+cH4XXaAdL6GgIR0Cgt21U+9rXdX2UKGgGR0BxFbjQzDXOaAdNFQFoCEdAoLf/nlnyu3V9lChoBkdAcjTh5xBE8mgHTRwBaAhHQKC4lPDYRNB1fZQoaAZHQHOD0rXlKbtoB0v/aAhHQKC5FF7Uoa11fZQoaAZHQHAUPt2LYPJoB00HAWgIR0CguZfW+XZ5dX2UKGgGR0BwiJLBbfP5aAdL2WgIR0CgugrgwXZXdX2UKGgGR0BxnuI3zcynaAdNCAFoCEdAoL0GglF+eHV9lChoBkdAcKjso2GZeGgHTQQBaAhHQKC9iSpzcRF1fZQoaAZHQHFx9KdxyXFoB0vmaAhHQKC9/vn8sMB1fZQoaAZHQHKmrmMfigloB00gAWgIR0CgvpaVt4zKdX2UKGgGR0BvXzeEZiuuaAdL2GgIR0CgvwIJiRW+dX2UKGgGR0BxeZU4rBj4aAdL+WgIR0Cgv31m8M/hdX2UKGgGR0ByignSfDk3aAdL7GgIR0Cgv/zd+G47dX2UKGgGR0BwfF4VymygaAdNCQFoCEdAoMB+Z9d/rnV9lChoBkdAbnMxREWqLmgHS+FoCEdAoMDtSCOFQHV9lChoBkdAcQIv9tMwlGgHTSsBaAhHQKDBgL6UJOZ1fZQoaAZHQHOr6rq+rU9oB0vVaAhHQKDCEF0PpY91fZQoaAZHQHCDLgOz6adoB0vGaAhHQKDCnIoVmBh1fZQoaAZHQHDWoH1OCXhoB0vPaAhHQKDDJvwVj7R1fZQoaAZHQEVd9Cu2ZzBoB0voaAhHQKDDu+MZP2x1fZQoaAZHQG767tZ3cHpoB0vUaAhHQKDEQu2Zy+91fZQoaAZHQHC44YixFApoB00BAWgIR0CgxO3SBshxdX2UKGgGR0Bt2hPEbYK6aAdL6mgIR0CgxZd5yEL6dX2UKGgGR0Bym+cRUWEcaAdNKAFoCEdAoMnHwd8zAXV9lChoBkdAcL9XdTHbRGgHS9poCEdAoMozKNhmXnV9lChoBkdAcilkdFOO82gHTTUBaAhHQKDK4NxVAA11fZQoaAZHQG58xbSqlxhoB0v1aAhHQKDLXgfEGaB1fZQoaAZHQG+yY/mknCxoB0v0aAhHQKDL1SIgvDh1fZQoaAZHQG8FHJLdvbZoB00YAWgIR0CgzGkWRA8kdX2UKGgGR0Bzb2MkyDZlaAdL32gIR0CgzNafra/RdX2UKGgGR0BxJKO938oAaAdL6mgIR0CgzUrGR3eOdX2UKGgGR0BwMhzgdfb9aAdL0WgIR0Cgza8HfMwDdX2UKGgGR0Bx2eEdvKlpaAdL/2gIR0Cgzit29tdidX2UKGgGR0Bxsr5ZbILgaAdL12gIR0Cgzpf0/W1/dX2UKGgGR0By0xDohY/3aAdL4WgIR0CgzwdupCKKdX2UKGgGR0ByNB77bcoIaAdNCwFoCEdAoM+M7fYSQHV9lChoBkdAc34IDoyKvWgHS9xoCEdAoM/5DeCTU3V9lChoBkdAb72ZtNzr/2gHS/FoCEdAoNBxuVHFxXV9lChoBkdAcQWN7BwdbWgHS+FoCEdAoNDqHbh3q3V9lChoBkdAc5k+az/p+2gHS/poCEdAoNFuJvYOD3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1468, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ2ezKp4ODzrtuWAJA3C9/UYwDaW5jlIoRDSxc+wY4VeAl/dGVhSs2uwB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRV84T7Me/Lu0146La3HVHhgCMA2luY5SKEPlJNNomPa7CHLnQZx/ajnF1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBbGWWJsAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 4096, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}