Schnatz65 commited on
Commit
23aa607
1 Parent(s): 4df4a5b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -19,7 +19,7 @@ model-index:
19
  metrics:
20
  - name: Accuracy
21
  type: accuracy
22
- value: 0.8267741935483871
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -29,8 +29,8 @@ should probably proofread and complete it, then remove this comment. -->
29
 
30
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
31
  It achieves the following results on the evaluation set:
32
- - Loss: 1.3027
33
- - Accuracy: 0.8268
34
 
35
  ## Model description
36
 
@@ -61,9 +61,9 @@ The following hyperparameters were used during training:
61
 
62
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
63
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
64
- | 2.7843 | 1.0 | 318 | 2.1671 | 0.7284 |
65
- | 1.8628 | 2.0 | 636 | 1.4986 | 0.8074 |
66
- | 1.434 | 3.0 | 954 | 1.3027 | 0.8268 |
67
 
68
 
69
  ### Framework versions
@@ -71,4 +71,4 @@ The following hyperparameters were used during training:
71
  - Transformers 4.16.2
72
  - Pytorch 1.12.1
73
  - Datasets 1.16.1
74
- - Tokenizers 0.15.2
 
19
  metrics:
20
  - name: Accuracy
21
  type: accuracy
22
+ value: 0.8158064516129032
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
29
 
30
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
31
  It achieves the following results on the evaluation set:
32
+ - Loss: 0.1711
33
+ - Accuracy: 0.8158
34
 
35
  ## Model description
36
 
 
61
 
62
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
63
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
64
+ | 0.6271 | 1.0 | 318 | 0.3618 | 0.6210 |
65
+ | 0.3122 | 2.0 | 636 | 0.2048 | 0.7758 |
66
+ | 0.222 | 3.0 | 954 | 0.1711 | 0.8158 |
67
 
68
 
69
  ### Framework versions
 
71
  - Transformers 4.16.2
72
  - Pytorch 1.12.1
73
  - Datasets 1.16.1
74
+ - Tokenizers 0.10.3