add readme
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Instruction-Tuned Mamba 2.8B on SlimOrca Dataset
|
2 |
+
|
3 |
+
## Overview
|
4 |
+
This repository features the [2.8 billion parameter Mamba model](https://huggingface.co/state-spaces/mamba-2.8b), fine-tuned on a subset (20k) of the [SlimOrca dataset](https://huggingface.co/datasets/Open-Orca/SlimOrca). Big thanks to Justin Mattern from Haven for contributing essential code in the [mamba-chat repository](https://github.com/havenhq/mamba-chat)
|
5 |
+
|
6 |
+
|
7 |
+
## Usage Instructions
|
8 |
+
To utilize the fine-tuned model, follow the Python code snippet below:
|
9 |
+
|
10 |
+
```python
|
11 |
+
import torch
|
12 |
+
from transformers import AutoTokenizer
|
13 |
+
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
14 |
+
|
15 |
+
device = "cuda"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("Schmadge/mamba-slim-orca")
|
17 |
+
tokenizer.eos_token = tokenizer.pad_token = "<|endoftext|>"
|
18 |
+
tokenizer.chat_template = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta").chat_template
|
19 |
+
model = MambaLMHeadModel.from_pretrained("Schmadge/mamba-slim-orca", device=device, dtype=torch.float16)
|
20 |
+
|
21 |
+
def generate_response(system_prompt, user_prompt):
|
22 |
+
# Preparing the prompt
|
23 |
+
prompt = [
|
24 |
+
{"role": "system", "content": system_prompt},
|
25 |
+
{"role": "user", "content": user_prompt}
|
26 |
+
]
|
27 |
+
input_ids = tokenizer.apply_chat_template(prompt, return_tensors="pt", add_generation_prompt=True).to(device)
|
28 |
+
|
29 |
+
# Generating the response
|
30 |
+
out = model.generate(input_ids=input_ids, max_length=2000, temperature=0.3, top_p=0.7, eos_token_id=tokenizer.eos_token_id)
|
31 |
+
decoded = tokenizer.batch_decode(out)
|
32 |
+
|
33 |
+
return decoded[0].split("<|assistant|>\n")[-1].replace('<|endoftext|>','')
|
34 |
+
|
35 |
+
system_prompt = "You are an AI assistant. Provide a detailed answer so user don't need to search outside to understand the answer."
|
36 |
+
user_prompt = "In a room I have only 3 sisters. Anna is reading a book. Alice is playing a match of chess.What the third sister, Amanda is doing ?"
|
37 |
+
response = generate_response(system_prompt, user_prompt)
|
38 |
+
print(response)
|
39 |
+
```
|
40 |
+
|
41 |
+
## Citation
|
42 |
+
Mamba:
|
43 |
+
```bibtex
|
44 |
+
@article{mamba,
|
45 |
+
title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
|
46 |
+
author={Gu, Albert and Dao, Tri},
|
47 |
+
journal={arXiv preprint arXiv:2312.00752},
|
48 |
+
year={2023}
|
49 |
+
}
|
50 |
+
```
|
51 |
+
|
52 |
+
SlimOrca:
|
53 |
+
```bibtex
|
54 |
+
@misc{SlimOrca,
|
55 |
+
title = {SlimOrca: An Open Dataset of GPT-4 Augmented FLAN Reasoning Traces, with Verification},
|
56 |
+
author = {Wing Lian and others},
|
57 |
+
year = {2023},
|
58 |
+
publisher = {HuggingFace},
|
59 |
+
url = {https://huggingface.co/Open-Orca/SlimOrca}
|
60 |
+
}
|
61 |
+
```
|