LunarLander-v2 - PPO - Agent
Browse files- PPO-LunarLander-v2-tuned.zip +3 -0
- PPO-LunarLander-v2-tuned/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2-tuned/data +115 -0
- PPO-LunarLander-v2-tuned/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2-tuned/policy.pth +3 -0
- PPO-LunarLander-v2-tuned/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2-tuned/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-LunarLander-v2-tuned.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2894a557f93e3e3ffee6a012c5ed75ba7ef8679a380cc7e3b28cdbec156288bf
|
3 |
+
size 861679
|
PPO-LunarLander-v2-tuned/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
PPO-LunarLander-v2-tuned/data
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a323aea1e10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a323aea1ea0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a323aea1f30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a323aea1fc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a323aea2050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a323aea20e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a323aea2170>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a323aea2200>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a323aea2290>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a323aea2320>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a323aea23b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a323aea2440>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a323ae9e880>"
|
21 |
+
},
|
22 |
+
"verbose": 0,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVaQAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZQoS4BLgEuAZYwCdmaUXZQoS4BLgEuAZXWMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUdS4=",
|
26 |
+
"net_arch": {
|
27 |
+
"pi": [
|
28 |
+
128,
|
29 |
+
128,
|
30 |
+
128
|
31 |
+
],
|
32 |
+
"vf": [
|
33 |
+
128,
|
34 |
+
128,
|
35 |
+
128
|
36 |
+
]
|
37 |
+
},
|
38 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>"
|
39 |
+
},
|
40 |
+
"num_timesteps": 2002944,
|
41 |
+
"_total_timesteps": 2000000.0,
|
42 |
+
"_num_timesteps_at_start": 0,
|
43 |
+
"seed": 0,
|
44 |
+
"action_noise": null,
|
45 |
+
"start_time": 1692120566197209107,
|
46 |
+
"learning_rate": 0.001,
|
47 |
+
"tensorboard_log": null,
|
48 |
+
"_last_obs": {
|
49 |
+
":type:": "<class 'numpy.ndarray'>",
|
50 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAABpzjzD6r4/1m/+PWIx5LwgdgI7yaaEPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
51 |
+
},
|
52 |
+
"_last_episode_starts": {
|
53 |
+
":type:": "<class 'numpy.ndarray'>",
|
54 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
55 |
+
},
|
56 |
+
"_last_original_obs": null,
|
57 |
+
"_episode_num": 0,
|
58 |
+
"use_sde": false,
|
59 |
+
"sde_sample_freq": -1,
|
60 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
61 |
+
"_stats_window_size": 100,
|
62 |
+
"ep_info_buffer": {
|
63 |
+
":type:": "<class 'collections.deque'>",
|
64 |
+
":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHICwZXMhX+MAWyUS8SMAXSUR0CyfJ7EtNBXdX2UKGgGR0Bv+VUjs2NvaAdLnGgIR0CyfOiM98qndX2UKGgGR0Bw5HLOiWVvaAdLm2gIR0CyfUEka/ATdX2UKGgGR0BB7yHEdeY2aAdLWmgIR0CyfX3O8kD7dX2UKGgGR0By03d69kBkaAdLrGgIR0Cyfe4xUNrkdX2UKGgGR0BwsBYfW+XaaAdLoWgIR0Cyflfq1PWQdX2UKGgGR0Bwy7bAUL2IaAdLoGgIR0CyfsEW/JvHdX2UKGgGR0BxfaTX8O0+aAdLuWgIR0Cyf0RAKOT8dX2UKGgGR0BzB+dlNDc/aAdLw2gIR0CygXwl4TsZdX2UKGgGR0ByhqPbO/tZaAdLlWgIR0CygcMeCCjDdX2UKGgGR0Bwlf5BTn7paAdLpGgIR0CyghFzZHurdX2UKGgGR0BwDv5gw482aAdLp2gIR0CygmW3nZCfdX2UKGgGR0BxgYohIOH4aAdLt2gIR0CygrxSP2f1dX2UKGgGR0ByuW5OJtSAaAdLrWgIR0CygxAzLwF1dX2UKGgGR0BxnZy1eBxxaAdLomgIR0Cyg2HKji4sdX2UKGgGR0Bw328xsVL0aAdLo2gIR0Cyg6u9zwMIdX2UKGgGR0Bxmy8nNPgvaAdLiWgIR0Cyg+oj4YaYdX2UKGgGR0ByFVZdOZb7aAdLq2gIR0CyhDgIUrTZdX2UKGgGR0Bu3ZJf6XSjaAdLkWgIR0CyhHsRDkU9dX2UKGgGR0A0I36hxo7FaAdLZGgIR0CyhKdbkfcOdX2UKGgGR0BwtV2X9itraAdLrGgIR0CyhPVqagEmdX2UKGgGR0B0lZMlC1JEaAdLt2gIR0CyhVES26TXdX2UKGgGR0ByQuOFQEZBaAdL02gIR0CyhbY/FBIGdX2UKGgGR0BzAij3225QaAdNBQFoCEdAsoYxbJOnEXV9lChoBkdAcj25LRKHwmgHS7hoCEdAsoaHkBCD3HV9lChoBkdAcuAjhUBGQWgHS7BoCEdAsobXl6qsEXV9lChoBkdAc23Tyrgfl2gHS6ZoCEdAsoclETg2qHV9lChoBkdAcgVV81Gb1GgHS8poCEdAsoeC+7Dl5nV9lChoBkdAcEDAQxveg2gHS5loCEdAsofHo+wC83V9lChoBkdAcXxXfIjnm2gHS5toCEdAsogLvrnkk3V9lChoBkdAcTSRB/qgRWgHS5BoCEdAsohJbu+h5HV9lChoBkdAcfJMdtEXtWgHS7ZoCEdAsoibpt78enV9lChoBkdAcW1fjS5RTGgHS8hoCEdAsoosKsuFpXV9lChoBkdAcg1zD4xk/mgHS5NoCEdAsopq7jDKo3V9lChoBkdAOQxqO938oGgHS11oCEdAsoqWQYDT0HV9lChoBkdAcT/WKuSwGGgHS61oCEdAsor8nssxwnV9lChoBkdAc1IsHjZL7GgHS/JoCEdAsouQ8dPtUnV9lChoBkdAcb2xgy/KyWgHS7ZoCEdAsov+ZAprlHV9lChoBkdAcT7umaYu02gHS5xoCEdAsoxccIZ62XV9lChoBkdAceMN7SiM52gHS4FoCEdAsoyqwJPZZnV9lChoBkdAUfyWkadc0WgHS09oCEdAsozaoybhFXV9lChoBkdAcdRoMKCxvGgHS7hoCEdAso1TskY4yXV9lChoBkdAcBTW2gFotmgHS6BoCEdAso29h+fAbnV9lChoBkdAcYCTx5LRKGgHS61oCEdAso4cPhAGCHV9lChoBkdAcrAdgv114mgHS89oCEdAso56e05U+HV9lChoBkdAcf8ebd8ArGgHS+BoCEdAso7fQOWjXXV9lChoBkdAcw6U0Nz8xmgHS8xoCEdAso87c45tFnV9lChoBkdAcwUnLJSzgWgHS6FoCEdAso+ByLhrFnV9lChoBkdAcxYXe3x4IWgHS9poCEdAso/nci4axXV9lChoBkdAcrYsQumJnGgHS45oCEdAspAjghr303V9lChoBkdAcC1KzzErG2gHS5hoCEdAspBl6JIlMXV9lChoBkdAca1LUkOZs2gHS6loCEdAspCyIvalDXV9lChoBkdAcLCQNCqp+GgHS75oCEdAspEFGiHqNnV9lChoBkdActJgoPTXrmgHS6RoCEdAspFNzQu27XV9lChoBkdAcLv2RJVbRmgHS6RoCEdAspGa6/ZdwHV9lChoBkdAcHzI/qxC6mgHS5BoCEdAspHcCeVcEHV9lChoBkdAb0SfvnbItGgHS6FoCEdAspNTbwjMV3V9lChoBkdAc8fM3ZPEbmgHS+xoCEdAspPFmQKa5XV9lChoBkdAcUAy5I6KcmgHS8poCEdAspQifxtpEnV9lChoBkdAQynTVlPJrGgHS2poCEdAspRRQAMlTnV9lChoBkdAPH4M4LkS3GgHS1RoCEdAspR1/rjYI3V9lChoBkdAc4So8ZDRdGgHS8ZoCEdAspTUADJU53V9lChoBkdAcvE8stkFwGgHS7JoCEdAspUjxvvSdHV9lChoBkdAcIDmVJL/TGgHS4FoCEdAspVfKq4pdHV9lChoBkdAcfijm0VrRGgHS7JoCEdAspWu2G7Bf3V9lChoBkdAcPBHdGiHqWgHS4loCEdAspXtWxQizXV9lChoBkdAceQE3sHB12gHS7hoCEdAspZAZflZHXV9lChoBkdAb5qshgVoH2gHS5VoCEdAspaBocrAg3V9lChoBkdAM3a/M4cWCWgHS1hoCEdAspan0Yj0MHV9lChoBkdAcp3Fc6eXiWgHS5xoCEdAspbv7di2D3V9lChoBkdAb8x3h4t6HGgHS6VoCEdAspc3TRYzSHV9lChoBkdAcjcbnX/YJ2gHS7ZoCEdAspeGWkadc3V9lChoBkdAcF5HObAk9mgHS5NoCEdAspfHcynDSHV9lChoBkdAc1XMd92HL2gHS7RoCEdAspgsLc9GJHV9lChoBkdAc3dWbwz+FWgHS7VoCEdAspieldkauXV9lChoBkdAczJGHYYixGgHS+FoCEdAspkqwKSgXnV9lChoBkdAcVlnoPkJbGgHS7JoCEdAspmUmu1WsHV9lChoBkdAcugiA2AG0WgHS8RoCEdAspoNiiItUXV9lChoBkdAcPguXNTtLWgHS5FoCEdAsppoYXO4X3V9lChoBkdAdALOMERramgHS+ZoCEdAspsF2hZha3V9lChoBkdAcvDmZmZmZmgHS8RoCEdAspyg1XNkfHV9lChoBkdAcCMUY8+zMWgHS4loCEdAspzcqqfe13V9lChoBkdAcaW0O3DvVmgHS7loCEdAsp0vIo3JgnV9lChoBkdAcJX+2E0zj2gHS6poCEdAsp16eZof0XV9lChoBkdAcnUVE/jbSWgHS75oCEdAsp3PuWrwOXV9lChoBkdAchw5MDfWMGgHS6VoCEdAsp4bQD3dsXV9lChoBkdAcavfSQYDT2gHS5ZoCEdAsp5dXvH933V9lChoBkdAcWaBwuM+/2gHS8RoCEdAsp6xotcv/XV9lChoBkdAcmPe/Yao/GgHS4BoCEdAsp7qwB5ooXV9lChoBkdAcri8uBczImgHS8JoCEdAsp9BkhA4XHV9lChoBkdAcaBvRqoIfWgHS4doCEdAsp98SwnpjnV9lChoBkc/+BkOI68xsWgHTegDaAhHQLKh+4Ajps51fZQoaAZHQHDz7srupjtoB0usaAhHQLKiSXFcY651fZQoaAZHQHIuYrjHXEtoB0vBaAhHQLKinhOP/711fZQoaAZHQHEFNKyv9tNoB0usaAhHQLKi6oJiRW91fZQoaAZHQHPOslLOAy5oB0u+aAhHQLKjQNY8uBd1fZQoaAZHQHEzX3cpLEloB0uuaAhHQLKjjaqjrRl1fZQoaAZHQG8gmUnogV5oB0uUaAhHQLKjzTXrdFh1fZQoaAZHQHEIleF+NLloB0uLaAhHQLKkCcRlHz91fZQoaAZHQHGFhzFMqSZoB0usaAhHQLKkVhtLteF1ZS4="
|
65 |
+
},
|
66 |
+
"ep_success_buffer": {
|
67 |
+
":type:": "<class 'collections.deque'>",
|
68 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
69 |
+
},
|
70 |
+
"_n_updates": 1956,
|
71 |
+
"observation_space": {
|
72 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
73 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
74 |
+
"dtype": "float32",
|
75 |
+
"bounded_below": "[ True True True True True True True True]",
|
76 |
+
"bounded_above": "[ True True True True True True True True]",
|
77 |
+
"_shape": [
|
78 |
+
8
|
79 |
+
],
|
80 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
81 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
82 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
83 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
84 |
+
"_np_random": null
|
85 |
+
},
|
86 |
+
"action_space": {
|
87 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
88 |
+
":serialized:": "gAWVfQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
89 |
+
"n": "4",
|
90 |
+
"start": "0",
|
91 |
+
"_shape": [],
|
92 |
+
"dtype": "int64",
|
93 |
+
"_np_random": "Generator(PCG64)"
|
94 |
+
},
|
95 |
+
"n_envs": 1,
|
96 |
+
"n_steps": 4096,
|
97 |
+
"gamma": 0.99,
|
98 |
+
"gae_lambda": 0.98,
|
99 |
+
"ent_coef": 0.01,
|
100 |
+
"vf_coef": 0.5,
|
101 |
+
"max_grad_norm": 0.5,
|
102 |
+
"batch_size": 64,
|
103 |
+
"n_epochs": 4,
|
104 |
+
"clip_range": {
|
105 |
+
":type:": "<class 'function'>",
|
106 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
107 |
+
},
|
108 |
+
"clip_range_vf": null,
|
109 |
+
"normalize_advantage": true,
|
110 |
+
"target_kl": null,
|
111 |
+
"lr_schedule": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
114 |
+
}
|
115 |
+
}
|
PPO-LunarLander-v2-tuned/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:220e18a016e29a238c2ce42222097d957855692f2d2ccaa4817ed8ef1e932c95
|
3 |
+
size 564757
|
PPO-LunarLander-v2-tuned/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07a8f2779c982667e76907fdfcda087531963dfb0d6d56861593f7b3f2c53a35
|
3 |
+
size 281461
|
PPO-LunarLander-v2-tuned/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2-tuned/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 270.29 +/- 14.34
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a323aea1e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a323aea1ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a323aea1f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a323aea1fc0>", "_build": "<function ActorCriticPolicy._build at 0x7a323aea2050>", "forward": "<function ActorCriticPolicy.forward at 0x7a323aea20e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a323aea2170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a323aea2200>", "_predict": "<function ActorCriticPolicy._predict at 0x7a323aea2290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a323aea2320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a323aea23b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a323aea2440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a323ae9e880>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVaQAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZQoS4BLgEuAZYwCdmaUXZQoS4BLgEuAZXWMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUdS4=", "net_arch": {"pi": [128, 128, 128], "vf": [128, 128, 128]}, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>"}, "num_timesteps": 2002944, "_total_timesteps": 2000000.0, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1692120566197209107, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAABpzjzD6r4/1m/+PWIx5LwgdgI7yaaEPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHICwZXMhX+MAWyUS8SMAXSUR0CyfJ7EtNBXdX2UKGgGR0Bv+VUjs2NvaAdLnGgIR0CyfOiM98qndX2UKGgGR0Bw5HLOiWVvaAdLm2gIR0CyfUEka/ATdX2UKGgGR0BB7yHEdeY2aAdLWmgIR0CyfX3O8kD7dX2UKGgGR0By03d69kBkaAdLrGgIR0Cyfe4xUNrkdX2UKGgGR0BwsBYfW+XaaAdLoWgIR0Cyflfq1PWQdX2UKGgGR0Bwy7bAUL2IaAdLoGgIR0CyfsEW/JvHdX2UKGgGR0BxfaTX8O0+aAdLuWgIR0Cyf0RAKOT8dX2UKGgGR0BzB+dlNDc/aAdLw2gIR0CygXwl4TsZdX2UKGgGR0ByhqPbO/tZaAdLlWgIR0CygcMeCCjDdX2UKGgGR0Bwlf5BTn7paAdLpGgIR0CyghFzZHurdX2UKGgGR0BwDv5gw482aAdLp2gIR0CygmW3nZCfdX2UKGgGR0BxgYohIOH4aAdLt2gIR0CygrxSP2f1dX2UKGgGR0ByuW5OJtSAaAdLrWgIR0CygxAzLwF1dX2UKGgGR0BxnZy1eBxxaAdLomgIR0Cyg2HKji4sdX2UKGgGR0Bw328xsVL0aAdLo2gIR0Cyg6u9zwMIdX2UKGgGR0Bxmy8nNPgvaAdLiWgIR0Cyg+oj4YaYdX2UKGgGR0ByFVZdOZb7aAdLq2gIR0CyhDgIUrTZdX2UKGgGR0Bu3ZJf6XSjaAdLkWgIR0CyhHsRDkU9dX2UKGgGR0A0I36hxo7FaAdLZGgIR0CyhKdbkfcOdX2UKGgGR0BwtV2X9itraAdLrGgIR0CyhPVqagEmdX2UKGgGR0B0lZMlC1JEaAdLt2gIR0CyhVES26TXdX2UKGgGR0ByQuOFQEZBaAdL02gIR0CyhbY/FBIGdX2UKGgGR0BzAij3225QaAdNBQFoCEdAsoYxbJOnEXV9lChoBkdAcj25LRKHwmgHS7hoCEdAsoaHkBCD3HV9lChoBkdAcuAjhUBGQWgHS7BoCEdAsobXl6qsEXV9lChoBkdAc23Tyrgfl2gHS6ZoCEdAsoclETg2qHV9lChoBkdAcgVV81Gb1GgHS8poCEdAsoeC+7Dl5nV9lChoBkdAcEDAQxveg2gHS5loCEdAsofHo+wC83V9lChoBkdAcXxXfIjnm2gHS5toCEdAsogLvrnkk3V9lChoBkdAcTSRB/qgRWgHS5BoCEdAsohJbu+h5HV9lChoBkdAcfJMdtEXtWgHS7ZoCEdAsoibpt78enV9lChoBkdAcW1fjS5RTGgHS8hoCEdAsoosKsuFpXV9lChoBkdAcg1zD4xk/mgHS5NoCEdAsopq7jDKo3V9lChoBkdAOQxqO938oGgHS11oCEdAsoqWQYDT0HV9lChoBkdAcT/WKuSwGGgHS61oCEdAsor8nssxwnV9lChoBkdAc1IsHjZL7GgHS/JoCEdAsouQ8dPtUnV9lChoBkdAcb2xgy/KyWgHS7ZoCEdAsov+ZAprlHV9lChoBkdAcT7umaYu02gHS5xoCEdAsoxccIZ62XV9lChoBkdAceMN7SiM52gHS4FoCEdAsoyqwJPZZnV9lChoBkdAUfyWkadc0WgHS09oCEdAsozaoybhFXV9lChoBkdAcdRoMKCxvGgHS7hoCEdAso1TskY4yXV9lChoBkdAcBTW2gFotmgHS6BoCEdAso29h+fAbnV9lChoBkdAcYCTx5LRKGgHS61oCEdAso4cPhAGCHV9lChoBkdAcrAdgv114mgHS89oCEdAso56e05U+HV9lChoBkdAcf8ebd8ArGgHS+BoCEdAso7fQOWjXXV9lChoBkdAcw6U0Nz8xmgHS8xoCEdAso87c45tFnV9lChoBkdAcwUnLJSzgWgHS6FoCEdAso+ByLhrFnV9lChoBkdAcxYXe3x4IWgHS9poCEdAso/nci4axXV9lChoBkdAcrYsQumJnGgHS45oCEdAspAjghr303V9lChoBkdAcC1KzzErG2gHS5hoCEdAspBl6JIlMXV9lChoBkdAca1LUkOZs2gHS6loCEdAspCyIvalDXV9lChoBkdAcLCQNCqp+GgHS75oCEdAspEFGiHqNnV9lChoBkdActJgoPTXrmgHS6RoCEdAspFNzQu27XV9lChoBkdAcLv2RJVbRmgHS6RoCEdAspGa6/ZdwHV9lChoBkdAcHzI/qxC6mgHS5BoCEdAspHcCeVcEHV9lChoBkdAb0SfvnbItGgHS6FoCEdAspNTbwjMV3V9lChoBkdAc8fM3ZPEbmgHS+xoCEdAspPFmQKa5XV9lChoBkdAcUAy5I6KcmgHS8poCEdAspQifxtpEnV9lChoBkdAQynTVlPJrGgHS2poCEdAspRRQAMlTnV9lChoBkdAPH4M4LkS3GgHS1RoCEdAspR1/rjYI3V9lChoBkdAc4So8ZDRdGgHS8ZoCEdAspTUADJU53V9lChoBkdAcvE8stkFwGgHS7JoCEdAspUjxvvSdHV9lChoBkdAcIDmVJL/TGgHS4FoCEdAspVfKq4pdHV9lChoBkdAcfijm0VrRGgHS7JoCEdAspWu2G7Bf3V9lChoBkdAcPBHdGiHqWgHS4loCEdAspXtWxQizXV9lChoBkdAceQE3sHB12gHS7hoCEdAspZAZflZHXV9lChoBkdAb5qshgVoH2gHS5VoCEdAspaBocrAg3V9lChoBkdAM3a/M4cWCWgHS1hoCEdAspan0Yj0MHV9lChoBkdAcp3Fc6eXiWgHS5xoCEdAspbv7di2D3V9lChoBkdAb8x3h4t6HGgHS6VoCEdAspc3TRYzSHV9lChoBkdAcjcbnX/YJ2gHS7ZoCEdAspeGWkadc3V9lChoBkdAcF5HObAk9mgHS5NoCEdAspfHcynDSHV9lChoBkdAc1XMd92HL2gHS7RoCEdAspgsLc9GJHV9lChoBkdAc3dWbwz+FWgHS7VoCEdAspieldkauXV9lChoBkdAczJGHYYixGgHS+FoCEdAspkqwKSgXnV9lChoBkdAcVlnoPkJbGgHS7JoCEdAspmUmu1WsHV9lChoBkdAcugiA2AG0WgHS8RoCEdAspoNiiItUXV9lChoBkdAcPguXNTtLWgHS5FoCEdAsppoYXO4X3V9lChoBkdAdALOMERramgHS+ZoCEdAspsF2hZha3V9lChoBkdAcvDmZmZmZmgHS8RoCEdAspyg1XNkfHV9lChoBkdAcCMUY8+zMWgHS4loCEdAspzcqqfe13V9lChoBkdAcaW0O3DvVmgHS7loCEdAsp0vIo3JgnV9lChoBkdAcJX+2E0zj2gHS6poCEdAsp16eZof0XV9lChoBkdAcnUVE/jbSWgHS75oCEdAsp3PuWrwOXV9lChoBkdAchw5MDfWMGgHS6VoCEdAsp4bQD3dsXV9lChoBkdAcavfSQYDT2gHS5ZoCEdAsp5dXvH933V9lChoBkdAcWaBwuM+/2gHS8RoCEdAsp6xotcv/XV9lChoBkdAcmPe/Yao/GgHS4BoCEdAsp7qwB5ooXV9lChoBkdAcri8uBczImgHS8JoCEdAsp9BkhA4XHV9lChoBkdAcaBvRqoIfWgHS4doCEdAsp98SwnpjnV9lChoBkc/+BkOI68xsWgHTegDaAhHQLKh+4Ajps51fZQoaAZHQHDz7srupjtoB0usaAhHQLKiSXFcY651fZQoaAZHQHIuYrjHXEtoB0vBaAhHQLKinhOP/711fZQoaAZHQHEFNKyv9tNoB0usaAhHQLKi6oJiRW91fZQoaAZHQHPOslLOAy5oB0u+aAhHQLKjQNY8uBd1fZQoaAZHQHEzX3cpLEloB0uuaAhHQLKjjaqjrRl1fZQoaAZHQG8gmUnogV5oB0uUaAhHQLKjzTXrdFh1fZQoaAZHQHEIleF+NLloB0uLaAhHQLKkCcRlHz91fZQoaAZHQHGFhzFMqSZoB0usaAhHQLKkVhtLteF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVfQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 4096, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (174 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 270.2888256, "std_reward": 14.34253678069394, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-15T18:48:52.137637"}
|