Sarveshj commited on
Commit
80d029a
1 Parent(s): 3acebfe

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: BERT_ep9_lr4
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # BERT_ep9_lr4
19
+
20
+ This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1801
23
+ - Precision: 0.6659
24
+ - Recall: 0.7266
25
+ - F1: 0.6950
26
+ - Accuracy: 0.9478
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-08
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 9
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 467 | 0.2732 | 0.6635 | 0.6619 | 0.6627 | 0.9415 |
58
+ | 0.2772 | 2.0 | 934 | 0.2436 | 0.6562 | 0.6820 | 0.6688 | 0.9426 |
59
+ | 0.2379 | 3.0 | 1401 | 0.2224 | 0.6550 | 0.6980 | 0.6758 | 0.9437 |
60
+ | 0.2142 | 4.0 | 1868 | 0.2071 | 0.6597 | 0.7104 | 0.6841 | 0.9450 |
61
+ | 0.1968 | 5.0 | 2335 | 0.1960 | 0.6597 | 0.7165 | 0.6869 | 0.9461 |
62
+ | 0.1888 | 6.0 | 2802 | 0.1884 | 0.6610 | 0.7195 | 0.6890 | 0.9468 |
63
+ | 0.1788 | 7.0 | 3269 | 0.1835 | 0.6641 | 0.7244 | 0.6929 | 0.9474 |
64
+ | 0.1768 | 8.0 | 3736 | 0.1808 | 0.6652 | 0.7258 | 0.6942 | 0.9477 |
65
+ | 0.1695 | 9.0 | 4203 | 0.1801 | 0.6659 | 0.7266 | 0.6950 | 0.9478 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.27.4
71
+ - Pytorch 2.0.0+cu118
72
+ - Datasets 2.11.0
73
+ - Tokenizers 0.13.3