update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: BERT_ep9_lr4
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# BERT_ep9_lr4
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1801
|
23 |
+
- Precision: 0.6659
|
24 |
+
- Recall: 0.7266
|
25 |
+
- F1: 0.6950
|
26 |
+
- Accuracy: 0.9478
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-08
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 9
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 467 | 0.2732 | 0.6635 | 0.6619 | 0.6627 | 0.9415 |
|
58 |
+
| 0.2772 | 2.0 | 934 | 0.2436 | 0.6562 | 0.6820 | 0.6688 | 0.9426 |
|
59 |
+
| 0.2379 | 3.0 | 1401 | 0.2224 | 0.6550 | 0.6980 | 0.6758 | 0.9437 |
|
60 |
+
| 0.2142 | 4.0 | 1868 | 0.2071 | 0.6597 | 0.7104 | 0.6841 | 0.9450 |
|
61 |
+
| 0.1968 | 5.0 | 2335 | 0.1960 | 0.6597 | 0.7165 | 0.6869 | 0.9461 |
|
62 |
+
| 0.1888 | 6.0 | 2802 | 0.1884 | 0.6610 | 0.7195 | 0.6890 | 0.9468 |
|
63 |
+
| 0.1788 | 7.0 | 3269 | 0.1835 | 0.6641 | 0.7244 | 0.6929 | 0.9474 |
|
64 |
+
| 0.1768 | 8.0 | 3736 | 0.1808 | 0.6652 | 0.7258 | 0.6942 | 0.9477 |
|
65 |
+
| 0.1695 | 9.0 | 4203 | 0.1801 | 0.6659 | 0.7266 | 0.6950 | 0.9478 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.27.4
|
71 |
+
- Pytorch 2.0.0+cu118
|
72 |
+
- Datasets 2.11.0
|
73 |
+
- Tokenizers 0.13.3
|