SanjanaCodes commited on
Commit
d2a238c
1 Parent(s): 477cf12

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -0
README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Llama-3.1-8B-Instruct-Secure
2
+ Repository: SanjanaCodes/Llama-3.1-8B-Instruct-Secure
3
+ License: Add License Here
4
+ Languages: English (or specify other supported languages)
5
+ Base Model: Llama-3.1-8B (or specify if different)
6
+ Library Name: transformers, PyTorch (Add library used)
7
+ Pipeline Tag: text-generation
8
+
9
+ Model Description
10
+ The Llama-3.1-8B-Instruct-Secure is a fine-tuned variant of the Llama-3.1-8B model designed to address LLM security vulnerabilities while maintaining strong performance for instruction-based tasks. It is optimized to handle:
11
+
12
+ Secure Prompt Handling: Resistant to common jailbreak and adversarial attacks.
13
+ Instruction Following: Retains instruction-based generation accuracy.
14
+ Safety and Robustness: Improved safeguards against harmful or unsafe outputs.
15
+ Key Features:
16
+ Fine-tuned for secure instruction-based generation tasks.
17
+ Includes defense mechanisms against adversarial and jailbreaking prompts.
18
+ Pre-trained on a mixture of secure and adversarial datasets to generalize against threats.
19
+ Usage
20
+ Installation
21
+ bash
22
+ Copy code
23
+ pip install transformers torch
24
+ Example
25
+ python
26
+ Copy code
27
+ from transformers import AutoModelForCausalLM, AutoTokenizer
28
+
29
+ model_name = "SanjanaCodes/Llama-3.1-8B-Instruct-Secure"
30
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
31
+ model = AutoModelForCausalLM.from_pretrained(model_name)
32
+
33
+ # Example Input
34
+ input_text = "Explain the importance of cybersecurity in simple terms."
35
+ inputs = tokenizer(input_text, return_tensors="pt")
36
+
37
+ # Generate Response
38
+ output = model.generate(**inputs, max_length=150)
39
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
40
+ Training Details
41
+ Dataset
42
+ Fine-tuned on a curated dataset with:
43
+ Instruction-following data.
44
+ Security-focused prompts.
45
+ Adversarial prompts for robustness.
46
+ Training Procedure
47
+ Framework: PyTorch
48
+ Hardware: GPU-enabled nodes
49
+ Optimization Techniques:
50
+ Mixed Precision Training
51
+ Gradient Checkpointing
52
+ Evaluation Metrics: Attack Success Rate (ASR), Robustness Score