Sandipan1994 commited on
Commit
5ac0dcc
1 Parent(s): 6484d5f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ model-index:
10
+ - name: sentence_eval1
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # sentence_eval1
18
+
19
+ This model is a fine-tuned version of [roberta-large-mnli](https://huggingface.co/roberta-large-mnli) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4766
22
+ - Precision: {'precision': 0.863681451041519}
23
+ - Recall: {'recall': 0.8702170188463735}
24
+ - F1: {'f1': 0.8669369177156675}
25
+ - Acc: {'accuracy': 0.8073120494335736}
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 48
46
+ - eval_batch_size: 32
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 3.0
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Acc |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|:------------------------------:|:--------------------------:|:--------------------------------:|
56
+ | 0.437 | 1.0 | 1771 | 0.4753 | {'precision': 0.9119431443924424} | {'recall': 0.7511422044545973} | {'f1': 0.8237688874970641} | {'accuracy': 0.7681771369721936} |
57
+ | 0.367 | 2.0 | 3542 | 0.4342 | {'precision': 0.8658256880733946} | {'recall': 0.8623643632210166} | {'f1': 0.8640915593705294} | {'accuracy': 0.8043254376930999} |
58
+ | 0.2915 | 3.0 | 5313 | 0.4766 | {'precision': 0.863681451041519} | {'recall': 0.8702170188463735} | {'f1': 0.8669369177156675} | {'accuracy': 0.8073120494335736} |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.25.1
64
+ - Pytorch 1.13.0+cu116
65
+ - Datasets 2.7.1
66
+ - Tokenizers 0.13.2