SanderGi commited on
Commit
7d6c720
·
verified ·
1 Parent(s): f66b1ac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -3
README.md CHANGED
@@ -1,3 +1,60 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model:
4
+ - Ultralytics/YOLO11
5
+ tags:
6
+ - printed-circuit-boards
7
+ library_name: ultralytics
8
+ model-index:
9
+ - name: ultralytics/yolo11
10
+ results:
11
+ - task:
12
+ type: image-segmentation
13
+ metrics:
14
+ - type: f1
15
+ value: 99.8%
16
+ name: F1 Score
17
+ - type: mAP50
18
+ value: 99.5%
19
+ name: mAP50
20
+ metrics:
21
+ - f1 - 99.8%
22
+ - mAP50 - 99.5%
23
+ ---
24
+ # PCB Detection
25
+
26
+ There are [a lot of models](https://universe.roboflow.com/roboflow-100/printed-circuit-board/model/3) for detecting components within a Printed Circuit Board (PCB), but not as many for detecting which pixels (if any) in an image contain the PCB itself. Being able to determine if and where a PCB is in an image is useful for [calculating its size to estimate carbon footprint]((https://github.com/SanderGi/LCA)), as a preprocessing step for detecting components, to limit the amount of image more expensive PCB defect detection models have to process, and more.
27
+
28
+ Read more [here](https://github.com/SanderGi/PCB-Detection).
29
+
30
+ ## Usage
31
+
32
+ 1. Download [`the model weights`](https://huggingface.co/SanderGi/PCB-SEG/resolve/main/best.pt?download=true)
33
+ 2. `pip install ultralytics`
34
+ 3. Run the model with `yolo task=segment mode=predict model=[path to model weights] source=[path to test image]` from the terminal or with Python:
35
+
36
+ ```python
37
+ from ultralytics import YOLO
38
+ model = YOLO('[path to model weights]')
39
+ results = model.predict('[path/to/test/image.jpg]')
40
+ ```
41
+
42
+ ## Results
43
+
44
+ ### Segmentation
45
+ Dataset | Precision | Recall | F1 Score | mAP50 | mAP50-95
46
+ -----------|-----------|--------|----------|-------|---------
47
+ Training | 100.0% | 23.2% | 37.7% | 39.4% | 39.1%
48
+ Validation | 99.9% | 39.6% | 56.7% | 51.7% | 51.0%
49
+ Test | 99.7% | 100% | 99.8% | 99.5% | 95.6%
50
+
51
+ Sample predictions:
52
+ ![sample predictions](https://github.com/SanderGi/PCB-Detection/raw/refs/heads/main/data//augmented_seg/runs/no_perspective/val_batch1_pred.jpg)
53
+
54
+ ### Object Detection*
55
+
56
+ Dataset | Precision | Recall | F1 Score | mAP50 | mAP50-95
57
+ -----------|-----------|--------|----------|-------|---------
58
+ Training | 100.0% | 23.2% | 37.7% | 39.4% | 39.3%
59
+ Validation | 99.9% | 39.6% | 56.7% | 51.7% | 51.3%
60
+ Test | 99.7% | 100% | 99.8% | 99.5% | 94.5%