part of the Deep RL course
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-lunar-lander-drl.zip +3 -0
- ppo-lunar-lander-drl/_stable_baselines3_version +1 -0
- ppo-lunar-lander-drl/data +96 -0
- ppo-lunar-lander-drl/policy.optimizer.pth +3 -0
- ppo-lunar-lander-drl/policy.pth +3 -0
- ppo-lunar-lander-drl/pytorch_variables.pth +3 -0
- ppo-lunar-lander-drl/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 257.79 +/- 17.82
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff784e17ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff784e17d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff784e17dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff784e17e50>", "_build": "<function ActorCriticPolicy._build at 0x7ff784e17ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff784e17f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff784e18040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff784e180d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff784e18160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff784e181f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff784e18280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff784e18310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff784df98c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682340836255663337, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCLVz4MhlI+SmFyvo86a74+VV08WjTzvQAAAAAAAAAAjYEvvpxdVrwbkX67FYvIuWUQxT3zuaM6AACAPwAAgD+tnUQ+ZGHnPe0kd74d0za+tAdHO1E0jjsAAAAAAAAAAN1LWr6BKyI+OA0vPpFAyb1a0eW8d6tJPAAAAAAAAAAAek9bvty+KT8i/1S9xZ/avpvVKr2Dwoi9AAAAAAAAAADaaaw9MECgP6Jo1T7zqQ2/VlwEPq4oGT4AAAAAAAAAACbjAb7g2Jw/GtY9vuS5CL88srm9k8h9PAAAAAAAAAAA/cJ/vj/+lz7utjY9H5OIvqpszbwOUMM7AAAAAAAAAAAzNg6+eJGrPRQ3Lj6B5/e9GCqJO1Yt8rwAAAAAAAAAADMTyruPVnG6Wib6uwtKXbitRYY4xFnHNwAAgD8AAIA/AOlWPa9+aj32Obu8yrw6vh37SjzWaT88AAAAAAAAAADt3lO+GPiLPr7ZxLsdOoO+M9FWvRIkprwAAAAAAAAAAM2KMbxsiK0/9lMnvXTQx772Vb+7WBAbvQAAAAAAAAAA5r2EvjToXj42wGc+Y6lXvlu7zzyDvCI+AAAAAAAAAACTKwm+ARqNvCj+/LxSAvo81Tf7PaIIwL0AAIA/AACAP7P4dT40wii94vEYuysO3zmRo5G+SLNROgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8YEd/wVHY0CUhpRSlIwBbJRN6AOMAXSUR0CbZVI4VARkdX2UKGgGaAloD0MIjPSidr/NcECUhpRSlGgVTQcBaBZHQJtmY7MgU111fZQoaAZoCWgPQwgVViqoqPxtQJSGlFKUaBVNBAFoFkdAm2aJa/yoXXV9lChoBmgJaA9DCL+ByY3iRHBAlIaUUpRoFU0YAWgWR0CbZpuLJjlQdX2UKGgGaAloD0MIAmISLuSacECUhpRSlGgVTSIBaBZHQJvFWPDHfdh1fZQoaAZoCWgPQwhxyXGndC5xQJSGlFKUaBVNMAFoFkdAm8XbmEGqxXV9lChoBmgJaA9DCOgzoN7M83FAlIaUUpRoFU0dAWgWR0Cbx1m/WUbDdX2UKGgGaAloD0MI33AfufVlcECUhpRSlGgVS/1oFkdAm8hom9g4O3V9lChoBmgJaA9DCH3Qs1n1g0lAlIaUUpRoFUvEaBZHQJvKtL127nR1fZQoaAZoCWgPQwiob5nT5bduQJSGlFKUaBVNDgFoFkdAm8rRNM495nV9lChoBmgJaA9DCED4UKKlDm5AlIaUUpRoFUvnaBZHQJvLehBZ6ld1fZQoaAZoCWgPQwjGw3sOrMxwQJSGlFKUaBVL+GgWR0CbzMgte2NOdX2UKGgGaAloD0MIyOvBpHitbUCUhpRSlGgVS/loFkdAm89Kvq1PWXV9lChoBmgJaA9DCNm1vd2SDnFAlIaUUpRoFU1VAWgWR0Cb0GrhR64UdX2UKGgGaAloD0MIwXEZN7U/b0CUhpRSlGgVTQ0BaBZHQJvQ32oNutR1fZQoaAZoCWgPQwh+rOC34QRyQJSGlFKUaBVNPAFoFkdAm9O0nLJSznV9lChoBmgJaA9DCHi13JkJgHFAlIaUUpRoFU0RAWgWR0Cb1eX4j8k2dX2UKGgGaAloD0MInyKHiFtHcECUhpRSlGgVS+5oFkdAm9axYJVsDXV9lChoBmgJaA9DCMkE/BpJ929AlIaUUpRoFU0KAWgWR0Cb11OavzOHdX2UKGgGaAloD0MIO29jsyOeb0CUhpRSlGgVS/toFkdAm9oZ5NXYDnV9lChoBmgJaA9DCLuaPGU1um9AlIaUUpRoFU0SAWgWR0Cb25BOYYzjdX2UKGgGaAloD0MIxvoGJjdlbkCUhpRSlGgVTQkBaBZHQJvbr0163RZ1fZQoaAZoCWgPQwh72AsFLKNyQJSGlFKUaBVNhgFoFkdAm9w+lbeMynV9lChoBmgJaA9DCLZq14Q0jGBAlIaUUpRoFU3oA2gWR0Cb3PDwH7gsdX2UKGgGaAloD0MIX10VqIUlcUCUhpRSlGgVTUYBaBZHQJve2rxRVIZ1fZQoaAZoCWgPQwgbnfNT3KdwQJSGlFKUaBVNEAFoFkdAm983FUADJXV9lChoBmgJaA9DCL9hokGK2nFAlIaUUpRoFU0yAWgWR0Cb387ZWaMKdX2UKGgGaAloD0MIq5hKP+HwWkCUhpRSlGgVTegDaBZHQJvgf1jAi3Z1fZQoaAZoCWgPQwhgWz/957BwQJSGlFKUaBVNNwFoFkdAm+Dwjlgc+HV9lChoBmgJaA9DCDnThO0nz0FAlIaUUpRoFUvYaBZHQJvhGdwvQF91fZQoaAZoCWgPQwhFEyhiESZkQJSGlFKUaBVN6ANoFkdAm+FCnk1dgXV9lChoBmgJaA9DCDF+GvfmNHFAlIaUUpRoFU0XAWgWR0Cb4WQHzH0cdX2UKGgGaAloD0MI/u4dNSZNcUCUhpRSlGgVS/ZoFkdAm+HC/bj943V9lChoBmgJaA9DCIkpkUQvpnFAlIaUUpRoFU0dAWgWR0Cb4ouieumrdX2UKGgGaAloD0MIycfuAqXRcUCUhpRSlGgVS/xoFkdAm+OcqjJuEXV9lChoBmgJaA9DCDi6SndXim5AlIaUUpRoFU0TAWgWR0Cb5WL0Bfa6dX2UKGgGaAloD0MISE+RQ4RAcECUhpRSlGgVTQwBaBZHQJvlqsEJSix1fZQoaAZoCWgPQwjzVIfczK1wQJSGlFKUaBVNJgFoFkdAm+XzU3GXHHV9lChoBmgJaA9DCEoJwar6g3BAlIaUUpRoFU0bAWgWR0Cb5tF8ohIOdX2UKGgGaAloD0MI1qwzvu83cUCUhpRSlGgVS/1oFkdAm+iAqd6LO3V9lChoBmgJaA9DCLgE4J/SJ2xAlIaUUpRoFUv6aBZHQJvpGgqVhTh1fZQoaAZoCWgPQwiHUKVmj15uQJSGlFKUaBVL9GgWR0Cb6Vm51/2CdX2UKGgGaAloD0MIteGwNHADbECUhpRSlGgVTUABaBZHQJvqF8twrDt1fZQoaAZoCWgPQwjUm1HzVQlyQJSGlFKUaBVL/GgWR0Cb6hgK4QSSdX2UKGgGaAloD0MI8IXJVAFFcUCUhpRSlGgVS/poFkdAm+poDLbHqHV9lChoBmgJaA9DCAUXK2rw9XBAlIaUUpRoFU0QAWgWR0Cb6m/W1+iKdX2UKGgGaAloD0MIJjeKrDXsckCUhpRSlGgVTRcBaBZHQJvqwz2vjfh1fZQoaAZoCWgPQwgb1lQWhe9wQJSGlFKUaBVNGgFoFkdAm+wr433pOnV9lChoBmgJaA9DCOYF2Eenql5AlIaUUpRoFU3oA2gWR0Cb7VFHavicdX2UKGgGaAloD0MIvf25aEiZb0CUhpRSlGgVS/doFkdAm+4ZbMX7+HV9lChoBmgJaA9DCAgDz72H/G9AlIaUUpRoFU0cAWgWR0Cb7yBOHnEEdX2UKGgGaAloD0MIP41785uHckCUhpRSlGgVTSIBaBZHQJvv+/Yao/B1fZQoaAZoCWgPQwiCH9Ww38NwQJSGlFKUaBVNEQFoFkdAm/BN9x6v7nV9lChoBmgJaA9DCHGS5o/p729AlIaUUpRoFUvyaBZHQJvxaEUTL4h1fZQoaAZoCWgPQwim0eRiDJJvQJSGlFKUaBVNEgJoFkdAm/GOE7GNrHV9lChoBmgJaA9DCNPZyeBoFXFAlIaUUpRoFUvyaBZHQJvyaWOZLIx1fZQoaAZoCWgPQwiIE5hOa+5wQJSGlFKUaBVNBgFoFkdAm/Mpz1bqyHV9lChoBmgJaA9DCC6M9KJ2YXFAlIaUUpRoFUv6aBZHQJvzJFx4ptt1fZQoaAZoCWgPQwjzrKQV35ZxQJSGlFKUaBVNBAFoFkdAm/N8M/hVEXV9lChoBmgJaA9DCHejj/nA2nBAlIaUUpRoFU0iAWgWR0Cb9PZFocrBdX2UKGgGaAloD0MISMK+ncTubECUhpRSlGgVTXABaBZHQJv2LUVi4KB1fZQoaAZoCWgPQwgRAYdQJdxxQJSGlFKUaBVNIAFoFkdAm/aHrQgLZ3V9lChoBmgJaA9DCNODglL0hHBAlIaUUpRoFUv8aBZHQJv3NVaOgg51fZQoaAZoCWgPQwiwNzEkpyRvQJSGlFKUaBVNBgFoFkdAm/ilcUuct3V9lChoBmgJaA9DCKnCn+FNDnBAlIaUUpRoFU0LAWgWR0Cb+h1m8M/hdX2UKGgGaAloD0MIMnIW9vS7ckCUhpRSlGgVTQ8BaBZHQJv7mBSUC7t1fZQoaAZoCWgPQwg6rdugtltxQJSGlFKUaBVNQgFoFkdAm/2ntBv733V9lChoBmgJaA9DCIBHVKhuoGxAlIaUUpRoFU1sAWgWR0Cb/cv4M4LkdX2UKGgGaAloD0MIcY46Oi7VcUCUhpRSlGgVTRgBaBZHQJv949zOopB1fZQoaAZoCWgPQwgZINEESlhwQJSGlFKUaBVNLgFoFkdAm/67fLs8gnV9lChoBmgJaA9DCOpeJ/Vl7W5AlIaUUpRoFUv8aBZHQJv+zVCojwB1fZQoaAZoCWgPQwjJAiZwa+VxQJSGlFKUaBVL6WgWR0Cb/8ZntfG/dX2UKGgGaAloD0MIVaGBWDbHcUCUhpRSlGgVTV8BaBZHQJwBBZNfw7V1fZQoaAZoCWgPQwjr5AzFnVlxQJSGlFKUaBVNFQFoFkdAnAElAE+xGHV9lChoBmgJaA9DCDAsf75tPHBAlIaUUpRoFUv7aBZHQJwHCO938oB1fZQoaAZoCWgPQwhwJxHhX+huQJSGlFKUaBVNSQFoFkdAnAdUgOjIrHV9lChoBmgJaA9DCDOny2KihHFAlIaUUpRoFUv0aBZHQJwKM5Lh73R1fZQoaAZoCWgPQwjswg/OJ0huQJSGlFKUaBVNWAFoFkdAnArhsZYPoXV9lChoBmgJaA9DCH1aRX9oF25AlIaUUpRoFU0JAWgWR0CcC0W1c+qzdX2UKGgGaAloD0MIEZAvoYLBYECUhpRSlGgVTegDaBZHQJwMVbILgGd1fZQoaAZoCWgPQwiGkPP+/x9yQJSGlFKUaBVNMAFoFkdAnA3NugpSaXV9lChoBmgJaA9DCEpiSbm7J3BAlIaUUpRoFU0YAWgWR0CcDeHCXQdCdX2UKGgGaAloD0MIYU87/LXbckCUhpRSlGgVTRMBaBZHQJwREq7ROUN1fZQoaAZoCWgPQwgfK/htSMdxQJSGlFKUaBVNOwFoFkdAnBPfXwsoUnV9lChoBmgJaA9DCK9bBMb6G15AlIaUUpRoFU3oA2gWR0CcFROavzOHdX2UKGgGaAloD0MIcuFASBY7ckCUhpRSlGgVS/ZoFkdAnBdW6ClJpXV9lChoBmgJaA9DCExV2uJajHBAlIaUUpRoFU0QAWgWR0CcGNzNliBodX2UKGgGaAloD0MIoKhsWNM5ckCUhpRSlGgVTcMBaBZHQJwaUrbxmTV1fZQoaAZoCWgPQwgeiZen86RuQJSGlFKUaBVL6mgWR0CcGuJOWSlndX2UKGgGaAloD0MIJjYf14Z5cUCUhpRSlGgVTRgBaBZHQJwbbbxmTTx1fZQoaAZoCWgPQwiB6h9EcotwQJSGlFKUaBVL9WgWR0CcHGGus90SdX2UKGgGaAloD0MIZaiKqXT6cUCUhpRSlGgVTSMBaBZHQJwciyUs4DN1fZQoaAZoCWgPQwgWokPgSE5gQJSGlFKUaBVN6ANoFkdAnBzq9kBjnXV9lChoBmgJaA9DCNydtduuPnJAlIaUUpRoFUvdaBZHQJwdjp/wy7B1fZQoaAZoCWgPQwhRE30+ClhxQJSGlFKUaBVNSgFoFkdAnB3gcPvrnnV9lChoBmgJaA9DCLrA5bFmJnFAlIaUUpRoFU0hAWgWR0CcHjCcwxnGdX2UKGgGaAloD0MIRX9o5kkbckCUhpRSlGgVS+1oFkdAnB+xh6SkkHV9lChoBmgJaA9DCJLOwMhLBnFAlIaUUpRoFUv/aBZHQJwhHcpLEk11fZQoaAZoCWgPQwiCO1CnPCpxQJSGlFKUaBVL+GgWR0CcIkCHymQ9dX2UKGgGaAloD0MIBWoxeJgbWkCUhpRSlGgVTegDaBZHQJwiZfhMrVh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-lunar-lander-drl.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4556ea357abc558ec5854a23f03c55afbeb0dd17725bb92c69017ffbe6c829a
|
3 |
+
size 147354
|
ppo-lunar-lander-drl/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-lunar-lander-drl/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff784e17ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff784e17d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff784e17dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff784e17e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff784e17ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff784e17f70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff784e18040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff784e180d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff784e18160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff784e181f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff784e18280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff784e18310>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff784df98c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682340836255663337,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCLVz4MhlI+SmFyvo86a74+VV08WjTzvQAAAAAAAAAAjYEvvpxdVrwbkX67FYvIuWUQxT3zuaM6AACAPwAAgD+tnUQ+ZGHnPe0kd74d0za+tAdHO1E0jjsAAAAAAAAAAN1LWr6BKyI+OA0vPpFAyb1a0eW8d6tJPAAAAAAAAAAAek9bvty+KT8i/1S9xZ/avpvVKr2Dwoi9AAAAAAAAAADaaaw9MECgP6Jo1T7zqQ2/VlwEPq4oGT4AAAAAAAAAACbjAb7g2Jw/GtY9vuS5CL88srm9k8h9PAAAAAAAAAAA/cJ/vj/+lz7utjY9H5OIvqpszbwOUMM7AAAAAAAAAAAzNg6+eJGrPRQ3Lj6B5/e9GCqJO1Yt8rwAAAAAAAAAADMTyruPVnG6Wib6uwtKXbitRYY4xFnHNwAAgD8AAIA/AOlWPa9+aj32Obu8yrw6vh37SjzWaT88AAAAAAAAAADt3lO+GPiLPr7ZxLsdOoO+M9FWvRIkprwAAAAAAAAAAM2KMbxsiK0/9lMnvXTQx772Vb+7WBAbvQAAAAAAAAAA5r2EvjToXj42wGc+Y6lXvlu7zzyDvCI+AAAAAAAAAACTKwm+ARqNvCj+/LxSAvo81Tf7PaIIwL0AAIA/AACAP7P4dT40wii94vEYuysO3zmRo5G+SLNROgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVYhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8YEd/wVHY0CUhpRSlIwBbJRN6AOMAXSUR0CbZVI4VARkdX2UKGgGaAloD0MIjPSidr/NcECUhpRSlGgVTQcBaBZHQJtmY7MgU111fZQoaAZoCWgPQwgVViqoqPxtQJSGlFKUaBVNBAFoFkdAm2aJa/yoXXV9lChoBmgJaA9DCL+ByY3iRHBAlIaUUpRoFU0YAWgWR0CbZpuLJjlQdX2UKGgGaAloD0MIAmISLuSacECUhpRSlGgVTSIBaBZHQJvFWPDHfdh1fZQoaAZoCWgPQwhxyXGndC5xQJSGlFKUaBVNMAFoFkdAm8XbmEGqxXV9lChoBmgJaA9DCOgzoN7M83FAlIaUUpRoFU0dAWgWR0Cbx1m/WUbDdX2UKGgGaAloD0MI33AfufVlcECUhpRSlGgVS/1oFkdAm8hom9g4O3V9lChoBmgJaA9DCH3Qs1n1g0lAlIaUUpRoFUvEaBZHQJvKtL127nR1fZQoaAZoCWgPQwiob5nT5bduQJSGlFKUaBVNDgFoFkdAm8rRNM495nV9lChoBmgJaA9DCED4UKKlDm5AlIaUUpRoFUvnaBZHQJvLehBZ6ld1fZQoaAZoCWgPQwjGw3sOrMxwQJSGlFKUaBVL+GgWR0CbzMgte2NOdX2UKGgGaAloD0MIyOvBpHitbUCUhpRSlGgVS/loFkdAm89Kvq1PWXV9lChoBmgJaA9DCNm1vd2SDnFAlIaUUpRoFU1VAWgWR0Cb0GrhR64UdX2UKGgGaAloD0MIwXEZN7U/b0CUhpRSlGgVTQ0BaBZHQJvQ32oNutR1fZQoaAZoCWgPQwh+rOC34QRyQJSGlFKUaBVNPAFoFkdAm9O0nLJSznV9lChoBmgJaA9DCHi13JkJgHFAlIaUUpRoFU0RAWgWR0Cb1eX4j8k2dX2UKGgGaAloD0MInyKHiFtHcECUhpRSlGgVS+5oFkdAm9axYJVsDXV9lChoBmgJaA9DCMkE/BpJ929AlIaUUpRoFU0KAWgWR0Cb11OavzOHdX2UKGgGaAloD0MIO29jsyOeb0CUhpRSlGgVS/toFkdAm9oZ5NXYDnV9lChoBmgJaA9DCLuaPGU1um9AlIaUUpRoFU0SAWgWR0Cb25BOYYzjdX2UKGgGaAloD0MIxvoGJjdlbkCUhpRSlGgVTQkBaBZHQJvbr0163RZ1fZQoaAZoCWgPQwh72AsFLKNyQJSGlFKUaBVNhgFoFkdAm9w+lbeMynV9lChoBmgJaA9DCLZq14Q0jGBAlIaUUpRoFU3oA2gWR0Cb3PDwH7gsdX2UKGgGaAloD0MIX10VqIUlcUCUhpRSlGgVTUYBaBZHQJve2rxRVIZ1fZQoaAZoCWgPQwgbnfNT3KdwQJSGlFKUaBVNEAFoFkdAm983FUADJXV9lChoBmgJaA9DCL9hokGK2nFAlIaUUpRoFU0yAWgWR0Cb387ZWaMKdX2UKGgGaAloD0MIq5hKP+HwWkCUhpRSlGgVTegDaBZHQJvgf1jAi3Z1fZQoaAZoCWgPQwhgWz/957BwQJSGlFKUaBVNNwFoFkdAm+Dwjlgc+HV9lChoBmgJaA9DCDnThO0nz0FAlIaUUpRoFUvYaBZHQJvhGdwvQF91fZQoaAZoCWgPQwhFEyhiESZkQJSGlFKUaBVN6ANoFkdAm+FCnk1dgXV9lChoBmgJaA9DCDF+GvfmNHFAlIaUUpRoFU0XAWgWR0Cb4WQHzH0cdX2UKGgGaAloD0MI/u4dNSZNcUCUhpRSlGgVS/ZoFkdAm+HC/bj943V9lChoBmgJaA9DCIkpkUQvpnFAlIaUUpRoFU0dAWgWR0Cb4ouieumrdX2UKGgGaAloD0MIycfuAqXRcUCUhpRSlGgVS/xoFkdAm+OcqjJuEXV9lChoBmgJaA9DCDi6SndXim5AlIaUUpRoFU0TAWgWR0Cb5WL0Bfa6dX2UKGgGaAloD0MISE+RQ4RAcECUhpRSlGgVTQwBaBZHQJvlqsEJSix1fZQoaAZoCWgPQwjzVIfczK1wQJSGlFKUaBVNJgFoFkdAm+XzU3GXHHV9lChoBmgJaA9DCEoJwar6g3BAlIaUUpRoFU0bAWgWR0Cb5tF8ohIOdX2UKGgGaAloD0MI1qwzvu83cUCUhpRSlGgVS/1oFkdAm+iAqd6LO3V9lChoBmgJaA9DCLgE4J/SJ2xAlIaUUpRoFUv6aBZHQJvpGgqVhTh1fZQoaAZoCWgPQwiHUKVmj15uQJSGlFKUaBVL9GgWR0Cb6Vm51/2CdX2UKGgGaAloD0MIteGwNHADbECUhpRSlGgVTUABaBZHQJvqF8twrDt1fZQoaAZoCWgPQwjUm1HzVQlyQJSGlFKUaBVL/GgWR0Cb6hgK4QSSdX2UKGgGaAloD0MI8IXJVAFFcUCUhpRSlGgVS/poFkdAm+poDLbHqHV9lChoBmgJaA9DCAUXK2rw9XBAlIaUUpRoFU0QAWgWR0Cb6m/W1+iKdX2UKGgGaAloD0MIJjeKrDXsckCUhpRSlGgVTRcBaBZHQJvqwz2vjfh1fZQoaAZoCWgPQwgb1lQWhe9wQJSGlFKUaBVNGgFoFkdAm+wr433pOnV9lChoBmgJaA9DCOYF2Eenql5AlIaUUpRoFU3oA2gWR0Cb7VFHavicdX2UKGgGaAloD0MIvf25aEiZb0CUhpRSlGgVS/doFkdAm+4ZbMX7+HV9lChoBmgJaA9DCAgDz72H/G9AlIaUUpRoFU0cAWgWR0Cb7yBOHnEEdX2UKGgGaAloD0MIP41785uHckCUhpRSlGgVTSIBaBZHQJvv+/Yao/B1fZQoaAZoCWgPQwiCH9Ww38NwQJSGlFKUaBVNEQFoFkdAm/BN9x6v7nV9lChoBmgJaA9DCHGS5o/p729AlIaUUpRoFUvyaBZHQJvxaEUTL4h1fZQoaAZoCWgPQwim0eRiDJJvQJSGlFKUaBVNEgJoFkdAm/GOE7GNrHV9lChoBmgJaA9DCNPZyeBoFXFAlIaUUpRoFUvyaBZHQJvyaWOZLIx1fZQoaAZoCWgPQwiIE5hOa+5wQJSGlFKUaBVNBgFoFkdAm/Mpz1bqyHV9lChoBmgJaA9DCC6M9KJ2YXFAlIaUUpRoFUv6aBZHQJvzJFx4ptt1fZQoaAZoCWgPQwjzrKQV35ZxQJSGlFKUaBVNBAFoFkdAm/N8M/hVEXV9lChoBmgJaA9DCHejj/nA2nBAlIaUUpRoFU0iAWgWR0Cb9PZFocrBdX2UKGgGaAloD0MISMK+ncTubECUhpRSlGgVTXABaBZHQJv2LUVi4KB1fZQoaAZoCWgPQwgRAYdQJdxxQJSGlFKUaBVNIAFoFkdAm/aHrQgLZ3V9lChoBmgJaA9DCNODglL0hHBAlIaUUpRoFUv8aBZHQJv3NVaOgg51fZQoaAZoCWgPQwiwNzEkpyRvQJSGlFKUaBVNBgFoFkdAm/ilcUuct3V9lChoBmgJaA9DCKnCn+FNDnBAlIaUUpRoFU0LAWgWR0Cb+h1m8M/hdX2UKGgGaAloD0MIMnIW9vS7ckCUhpRSlGgVTQ8BaBZHQJv7mBSUC7t1fZQoaAZoCWgPQwg6rdugtltxQJSGlFKUaBVNQgFoFkdAm/2ntBv733V9lChoBmgJaA9DCIBHVKhuoGxAlIaUUpRoFU1sAWgWR0Cb/cv4M4LkdX2UKGgGaAloD0MIcY46Oi7VcUCUhpRSlGgVTRgBaBZHQJv949zOopB1fZQoaAZoCWgPQwgZINEESlhwQJSGlFKUaBVNLgFoFkdAm/67fLs8gnV9lChoBmgJaA9DCOpeJ/Vl7W5AlIaUUpRoFUv8aBZHQJv+zVCojwB1fZQoaAZoCWgPQwjJAiZwa+VxQJSGlFKUaBVL6WgWR0Cb/8ZntfG/dX2UKGgGaAloD0MIVaGBWDbHcUCUhpRSlGgVTV8BaBZHQJwBBZNfw7V1fZQoaAZoCWgPQwjr5AzFnVlxQJSGlFKUaBVNFQFoFkdAnAElAE+xGHV9lChoBmgJaA9DCDAsf75tPHBAlIaUUpRoFUv7aBZHQJwHCO938oB1fZQoaAZoCWgPQwhwJxHhX+huQJSGlFKUaBVNSQFoFkdAnAdUgOjIrHV9lChoBmgJaA9DCDOny2KihHFAlIaUUpRoFUv0aBZHQJwKM5Lh73R1fZQoaAZoCWgPQwjswg/OJ0huQJSGlFKUaBVNWAFoFkdAnArhsZYPoXV9lChoBmgJaA9DCH1aRX9oF25AlIaUUpRoFU0JAWgWR0CcC0W1c+qzdX2UKGgGaAloD0MIEZAvoYLBYECUhpRSlGgVTegDaBZHQJwMVbILgGd1fZQoaAZoCWgPQwiGkPP+/x9yQJSGlFKUaBVNMAFoFkdAnA3NugpSaXV9lChoBmgJaA9DCEpiSbm7J3BAlIaUUpRoFU0YAWgWR0CcDeHCXQdCdX2UKGgGaAloD0MIYU87/LXbckCUhpRSlGgVTRMBaBZHQJwREq7ROUN1fZQoaAZoCWgPQwgfK/htSMdxQJSGlFKUaBVNOwFoFkdAnBPfXwsoUnV9lChoBmgJaA9DCK9bBMb6G15AlIaUUpRoFU3oA2gWR0CcFROavzOHdX2UKGgGaAloD0MIcuFASBY7ckCUhpRSlGgVS/ZoFkdAnBdW6ClJpXV9lChoBmgJaA9DCExV2uJajHBAlIaUUpRoFU0QAWgWR0CcGNzNliBodX2UKGgGaAloD0MIoKhsWNM5ckCUhpRSlGgVTcMBaBZHQJwaUrbxmTV1fZQoaAZoCWgPQwgeiZen86RuQJSGlFKUaBVL6mgWR0CcGuJOWSlndX2UKGgGaAloD0MIJjYf14Z5cUCUhpRSlGgVTRgBaBZHQJwbbbxmTTx1fZQoaAZoCWgPQwiB6h9EcotwQJSGlFKUaBVL9WgWR0CcHGGus90SdX2UKGgGaAloD0MIZaiKqXT6cUCUhpRSlGgVTSMBaBZHQJwciyUs4DN1fZQoaAZoCWgPQwgWokPgSE5gQJSGlFKUaBVN6ANoFkdAnBzq9kBjnXV9lChoBmgJaA9DCNydtduuPnJAlIaUUpRoFUvdaBZHQJwdjp/wy7B1fZQoaAZoCWgPQwhRE30+ClhxQJSGlFKUaBVNSgFoFkdAnB3gcPvrnnV9lChoBmgJaA9DCLrA5bFmJnFAlIaUUpRoFU0hAWgWR0CcHjCcwxnGdX2UKGgGaAloD0MIRX9o5kkbckCUhpRSlGgVS+1oFkdAnB+xh6SkkHV9lChoBmgJaA9DCJLOwMhLBnFAlIaUUpRoFUv/aBZHQJwhHcpLEk11fZQoaAZoCWgPQwiCO1CnPCpxQJSGlFKUaBVL+GgWR0CcIkCHymQ9dX2UKGgGaAloD0MIBWoxeJgbWkCUhpRSlGgVTegDaBZHQJwiZfhMrVh1ZS4="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 310,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 2048,
|
82 |
+
"gamma": 0.99,
|
83 |
+
"gae_lambda": 0.95,
|
84 |
+
"ent_coef": 0.0,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 10,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-lunar-lander-drl/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f8c115bc029e2274be97e2ec536ebdb4da37b49f0c3bc3a34f680e1f130be5a
|
3 |
+
size 87929
|
ppo-lunar-lander-drl/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db6e9c9301079f49bd1856c4e5c6817c3c731bcbea6c3fc2f0fbced5dcc50dde
|
3 |
+
size 43329
|
ppo-lunar-lander-drl/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-lunar-lander-drl/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (219 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 257.7880725792237, "std_reward": 17.81799185260594, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T13:25:13.296677"}
|