Samalabama66
commited on
Commit
·
0663917
1
Parent(s):
5312665
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +1 -1
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.52 +/- 0.99
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 108145
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:622d93bae1e4f083b8f2db2a200c5ad31ada70c2ce5e0f405e4be95cd2d33715
|
3 |
size 108145
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78838842d750>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x78838841f5c0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1690437645798979876,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJs7aPq+xazxHUww/Js7aPq+xazxHUww/Js7aPq+xazxHUww/Js7aPq+xazxHUww/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6FuXPvPgQT+81LO+JaxlP14Ihb5JMMS/7Ge4P/7vD76rYo4/7D5rvbb1KL/lywU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTwmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTwmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTwmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.42735404 0.01438562 0.5481457 ]\n [0.42735404 0.01438562 0.5481457 ]\n [0.42735404 0.01438562 0.5481457 ]\n [0.42735404 0.01438562 0.5481457 ]]",
|
38 |
+
"desired_goal": "[[ 0.29562306 0.7573387 -0.3512324 ]\n [ 0.89715797 -0.25982946 -1.5327235 ]\n [ 1.4406714 -0.14056394 1.1123861 ]\n [-0.05743305 -0.65999925 0.52264243]]",
|
39 |
+
"observation": "[[ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]\n [ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]\n [ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]\n [ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVhUFPdfVBz4fkk0+lac9vfNeFz5YR7Y9Ch74vRJjGL4x54k+UmDbPOuCiL0NKH4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.03249105 0.13265167 0.20075272]\n [-0.0463024 0.14782314 0.08900326]\n [-0.12115104 -0.14881542 0.26934198]\n [ 0.02677933 -0.06665596 0.24819966]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXcXiN4WVB8CUhpRSlIwBbJRLMowBdJRHQKaZLLlFMIx1fZQoaAZoCWgPQwgiNlg4STMDwJSGlFKUaBVLMmgWR0CmmPPOyE+QdX2UKGgGaAloD0MIiXyXUpeM+7+UhpRSlGgVSzJoFkdAppi7C79Q43V9lChoBmgJaA9DCOBJC5dVCBHAlIaUUpRoFUsyaBZHQKaYgk9ECvJ1fZQoaAZoCWgPQwj5oGez6nMGwJSGlFKUaBVLMmgWR0CmmrR95QgtdX2UKGgGaAloD0MIlsyxvKu+DsCUhpRSlGgVSzJoFkdAppp7dvbXYnV9lChoBmgJaA9DCLO0U3O5QQfAlIaUUpRoFUsyaBZHQKaaQoybhFV1fZQoaAZoCWgPQwgy422l18YKwJSGlFKUaBVLMmgWR0CmmgnkT6BRdX2UKGgGaAloD0MI9PxpozodBsCUhpRSlGgVSzJoFkdAppxRWDHwPXV9lChoBmgJaA9DCMBeYcH94AnAlIaUUpRoFUsyaBZHQKacGEDhcZ91fZQoaAZoCWgPQwjMtz6sNzoWwJSGlFKUaBVLMmgWR0Cmm98Wj45+dX2UKGgGaAloD0MIbCbfbHPDAMCUhpRSlGgVSzJoFkdAppunNPgvUXV9lChoBmgJaA9DCG8QrRVtLgfAlIaUUpRoFUsyaBZHQKadTR7Z39t1fZQoaAZoCWgPQwgSM/s8RjkOwJSGlFKUaBVLMmgWR0CmnRNjLB9DdX2UKGgGaAloD0MIVb/S+fCsA8CUhpRSlGgVSzJoFkdAppzZ1RtP6HV9lChoBmgJaA9DCHl0Iywqgg/AlIaUUpRoFUsyaBZHQKacoFj/dZd1fZQoaAZoCWgPQwgYfJqTFxn1v5SGlFKUaBVLMmgWR0CmnjfWMCLddX2UKGgGaAloD0MIM+IC0Cjd/b+UhpRSlGgVSzJoFkdApp3+DjBEa3V9lChoBmgJaA9DCFor2hzndvW/lIaUUpRoFUsyaBZHQKadxJwsGxF1fZQoaAZoCWgPQwiwAny3eSP7v5SGlFKUaBVLMmgWR0CmnYsIE8q4dX2UKGgGaAloD0MIcLGiBtOw9r+UhpRSlGgVSzJoFkdApp8mWdEsrnV9lChoBmgJaA9DCACMZ9DQv/S/lIaUUpRoFUsyaBZHQKae7KnvUjN1fZQoaAZoCWgPQwgAyt+9o+YAwJSGlFKUaBVLMmgWR0CmnrL39JjEdX2UKGgGaAloD0MIAKq4cYvZFsCUhpRSlGgVSzJoFkdApp55jpcHGHV9lChoBmgJaA9DCCmwAKYMHPu/lIaUUpRoFUsyaBZHQKagGYxcmjV1fZQoaAZoCWgPQwi3RC44g/8PwJSGlFKUaBVLMmgWR0Cmn9/0dzXCdX2UKGgGaAloD0MIHcpQFVMp+b+UhpRSlGgVSzJoFkdApp+mYKIBR3V9lChoBmgJaA9DCAT/W8mOzQ/AlIaUUpRoFUsyaBZHQKafbNhVlwt1fZQoaAZoCWgPQwifVWZK608HwJSGlFKUaBVLMmgWR0CmoQOlXRw7dX2UKGgGaAloD0MIaqFkcmonGcCUhpRSlGgVSzJoFkdApqDKBkI5YHV9lChoBmgJaA9DCN8ZbVUSuQvAlIaUUpRoFUsyaBZHQKagkIVuaWp1fZQoaAZoCWgPQwiQZiyazo71v5SGlFKUaBVLMmgWR0CmoFc3++/QdX2UKGgGaAloD0MIVkrP9BLj/L+UhpRSlGgVSzJoFkdApqHwjhUBGXV9lChoBmgJaA9DCFTm5hvRrRXAlIaUUpRoFUsyaBZHQKahtvRZ2ZB1fZQoaAZoCWgPQwh+cD51rIIQwJSGlFKUaBVLMmgWR0CmoX1E/jbSdX2UKGgGaAloD0MItyqJ7IOsEMCUhpRSlGgVSzJoFkdApqFDot+TeXV9lChoBmgJaA9DCFRzucFQR/e/lIaUUpRoFUsyaBZHQKai2bwz+FV1fZQoaAZoCWgPQwj5vrhUpV0YwJSGlFKUaBVLMmgWR0CmoqB1klNUdX2UKGgGaAloD0MIzqrP1VYsCMCUhpRSlGgVSzJoFkdApqJnPNVzZHV9lChoBmgJaA9DCM1bdR2qqQzAlIaUUpRoFUsyaBZHQKaiLjbzshR1fZQoaAZoCWgPQwgRqWkX00wPwJSGlFKUaBVLMmgWR0Cmo8KHfuTidX2UKGgGaAloD0MIyR02kZnLFcCUhpRSlGgVSzJoFkdApqOJH7P6bnV9lChoBmgJaA9DCMLdWbvtwgTAlIaUUpRoFUsyaBZHQKajT2vB7/p1fZQoaAZoCWgPQwgCYhIu5FEAwJSGlFKUaBVLMmgWR0CmoxXyRSxadX2UKGgGaAloD0MIdVjhlo9k+b+UhpRSlGgVSzJoFkdApqSjjPv8ZXV9lChoBmgJaA9DCLFSQUXVjwHAlIaUUpRoFUsyaBZHQKakacc2itd1fZQoaAZoCWgPQwih9ls7URL5v5SGlFKUaBVLMmgWR0CmpDAe7tiQdX2UKGgGaAloD0MIe/Xx0Hd3AMCUhpRSlGgVSzJoFkdApqP2kFfReHV9lChoBmgJaA9DCJ2huONNPgPAlIaUUpRoFUsyaBZHQKalh9pAUtZ1fZQoaAZoCWgPQwjWxtgJL2EGwJSGlFKUaBVLMmgWR0CmpU4Zl4C7dX2UKGgGaAloD0MIqtctAmOdDsCUhpRSlGgVSzJoFkdApqUUY64lQnV9lChoBmgJaA9DCMZRuYlaWgLAlIaUUpRoFUsyaBZHQKak2tcv/R51fZQoaAZoCWgPQwgOn3QiwTQBwJSGlFKUaBVLMmgWR0CmpnY3vQWvdX2UKGgGaAloD0MIs/D1tS41DsCUhpRSlGgVSzJoFkdApqY8v24/eXV9lChoBmgJaA9DCB7+mqxRz/2/lIaUUpRoFUsyaBZHQKamAw5eZ5R1fZQoaAZoCWgPQwhczM8NTRkFwJSGlFKUaBVLMmgWR0Cmpcm9HtngdX2UKGgGaAloD0MIho+IKZHEFMCUhpRSlGgVSzJoFkdApqdigPEsKHV9lChoBmgJaA9DCMed0sH6PwXAlIaUUpRoFUsyaBZHQKanKNVinYR1fZQoaAZoCWgPQwgWwmosYe0DwJSGlFKUaBVLMmgWR0Cmpu9BBzFNdX2UKGgGaAloD0MId9hEZi7w+b+UhpRSlGgVSzJoFkdApqa10YCQtHV9lChoBmgJaA9DCPTAx2DF6QvAlIaUUpRoFUsyaBZHQKaoXkNnXd11fZQoaAZoCWgPQwgP7s7abdfzv5SGlFKUaBVLMmgWR0CmqCSHmA9WdX2UKGgGaAloD0MIRRDn4QQmD8CUhpRSlGgVSzJoFkdApqfq1og3cnV9lChoBmgJaA9DCEph3uNMUxLAlIaUUpRoFUsyaBZHQKansadc0Lt1fZQoaAZoCWgPQwh24JwRpd0FwJSGlFKUaBVLMmgWR0CmqT8DSw4bdX2UKGgGaAloD0MIBd1e0hhtBsCUhpRSlGgVSzJoFkdApqkFRaX8fnV9lChoBmgJaA9DCBCTcCGPIPa/lIaUUpRoFUsyaBZHQKaoy6DoQnR1fZQoaAZoCWgPQwg6Pe/GgkL2v5SGlFKUaBVLMmgWR0CmqJIi9qUNdX2UKGgGaAloD0MITUnW4ejq/L+UhpRSlGgVSzJoFkdApqohQvYe1nV9lChoBmgJaA9DCKD7cma7ogDAlIaUUpRoFUsyaBZHQKap55JK8L91fZQoaAZoCWgPQwiP39v0Zx8HwJSGlFKUaBVLMmgWR0Cmqa3cHnlodX2UKGgGaAloD0MIuoPYmUIHAsCUhpRSlGgVSzJoFkdApql0VWS2Y3V9lChoBmgJaA9DCMHHYMWpFg3AlIaUUpRoFUsyaBZHQKarAYF7laN1fZQoaAZoCWgPQwh39pUH6WkBwJSGlFKUaBVLMmgWR0CmqsgSWZ7YdX2UKGgGaAloD0MITBk4oKWrA8CUhpRSlGgVSzJoFkdApqqPEjxCpnV9lChoBmgJaA9DCBO6S+KsaAbAlIaUUpRoFUsyaBZHQKaqViLEUCd1fZQoaAZoCWgPQwidoE0On5QNwJSGlFKUaBVLMmgWR0Cmq+srd30PdX2UKGgGaAloD0MIlIYahSTzDsCUhpRSlGgVSzJoFkdApquxceKba3V9lChoBmgJaA9DCHB7gsR29xXAlIaUUpRoFUsyaBZHQKard8kUsWh1fZQoaAZoCWgPQwgeNSbEXBIKwJSGlFKUaBVLMmgWR0Cmqz5Cv5gxdX2UKGgGaAloD0MIdENTdvoBB8CUhpRSlGgVSzJoFkdApqzFShrWRXV9lChoBmgJaA9DCBtJgnAFdBPAlIaUUpRoFUsyaBZHQKasi2mYSg51fZQoaAZoCWgPQwjohNBBl3D+v5SGlFKUaBVLMmgWR0CmrFHNHH3ldX2UKGgGaAloD0MIl6sfm+THBsCUhpRSlGgVSzJoFkdApqwYTfzjFXV9lChoBmgJaA9DCN0m3Cvz9gDAlIaUUpRoFUsyaBZHQKatpr3TNMZ1fZQoaAZoCWgPQwgtX5fhP30PwJSGlFKUaBVLMmgWR0CmrW0F8ohIdX2UKGgGaAloD0MIXvdWJCZoA8CUhpRSlGgVSzJoFkdApq0ziEQGwHV9lChoBmgJaA9DCNAoXfqXBBbAlIaUUpRoFUsyaBZHQKas+hzvJBB1fZQoaAZoCWgPQwg9gEV+/fALwJSGlFKUaBVLMmgWR0Cmroibc45tdX2UKGgGaAloD0MIk6rtJvgmE8CUhpRSlGgVSzJoFkdApq5O3QUpNXV9lChoBmgJaA9DCNAPI4RHSxDAlIaUUpRoFUsyaBZHQKauFSEUTL51fZQoaAZoCWgPQwgROBJosIkEwJSGlFKUaBVLMmgWR0Cmrdt9QXQ/dX2UKGgGaAloD0MImtAksaR8BcCUhpRSlGgVSzJoFkdApq9rSXt0FXV9lChoBmgJaA9DCF/ObFfowwnAlIaUUpRoFUsyaBZHQKavMa5wwTN1fZQoaAZoCWgPQwi70cd8QOAewJSGlFKUaBVLMmgWR0CmrvgoXsPbdX2UKGgGaAloD0MICWzOwTMh/7+UhpRSlGgVSzJoFkdApq6+lwcYInV9lChoBmgJaA9DCFAZ/z7jkhTAlIaUUpRoFUsyaBZHQKawTZg5R0l1fZQoaAZoCWgPQwgq499nXCgcwJSGlFKUaBVLMmgWR0CmsBPQ4S6EdX2UKGgGaAloD0MIgv5Cjxi9CcCUhpRSlGgVSzJoFkdApq/aJTER8XV9lChoBmgJaA9DCN20Gach6gLAlIaUUpRoFUsyaBZHQKavoIWxhUl1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84225829b9c824e00c6c79b8fede9950ecea305289d0e7fe7061509ac2e32bb1
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbee0d1c44ebed4ab30822a165aa292efe97210c81849ef46b32993e2685c373
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c074bbd9ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c074bbcff40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690361667884200370, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAG5u+Pu4vnzvCCQg/G5u+Pu4vnzvCCQg/G5u+Pu4vnzvCCQg/G5u+Pu4vnzvCCQg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUZScP4PzrD5d9xo/HwWmv6dEnD5Fp6a/Vz+iv9rFKL7N/Yy/EAnVvg10kj+av7q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAbm74+7i+fO8IJCD/zado7EPzRuTZ3tzsbm74+7i+fO8IJCD/zado7EPzRuTZ3tzsbm74+7i+fO8IJCD/zado7EPzRuTZ3tzsbm74+7i+fO8IJCD/zado7EPzRuTZ3tzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3722771 0.00485801 0.5313989 ]\n [0.3722771 0.00485801 0.5313989 ]\n [0.3722771 0.00485801 0.5313989 ]\n [0.3722771 0.00485801 0.5313989 ]]", "desired_goal": "[[ 1.2232763 0.33779535 0.60533696]\n [-1.2970313 0.30521128 -1.3019797 ]\n [-1.267558 -0.16481724 -1.1014954 ]\n [-0.41608477 1.1441666 -0.36474305]]", "observation": "[[ 3.7227711e-01 4.8580086e-03 5.3139889e-01 6.6654622e-03\n -4.0051388e-04 5.5989278e-03]\n [ 3.7227711e-01 4.8580086e-03 5.3139889e-01 6.6654622e-03\n -4.0051388e-04 5.5989278e-03]\n [ 3.7227711e-01 4.8580086e-03 5.3139889e-01 6.6654622e-03\n -4.0051388e-04 5.5989278e-03]\n [ 3.7227711e-01 4.8580086e-03 5.3139889e-01 6.6654622e-03\n -4.0051388e-04 5.5989278e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYsSdvKtsCjttQn09/TyPPKbIsb3+FIg+1LwXvq0DTz3UJ2Y+dtjaPV+rt7vfSTc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01925868 0.00211219 0.06183093]\n [ 0.01748514 -0.08680849 0.26578516]\n [-0.14818126 0.05054061 0.2247613 ]\n [ 0.10685818 -0.00560515 0.17899273]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIQGjy5uDBMCUhpRSlIwBbJRLMowBdJRHQKXdCgrYoRZ1fZQoaAZoCWgPQwhm3NRA8znhv5SGlFKUaBVLMmgWR0Cl3MghKUV0dX2UKGgGaAloD0MI/WzkuikFCsCUhpRSlGgVSzJoFkdApdyK2KEWZnV9lChoBmgJaA9DCPPJiuHqIBHAlIaUUpRoFUsyaBZHQKXcTqgRK6F1fZQoaAZoCWgPQwhE3JxKBgDhv5SGlFKUaBVLMmgWR0Cl3h2fseGPdX2UKGgGaAloD0MIOsyXF2A/EMCUhpRSlGgVSzJoFkdApd3bu6VdHHV9lChoBmgJaA9DCJbOh2cJ8vq/lIaUUpRoFUsyaBZHQKXdnpLVWjp1fZQoaAZoCWgPQwjE7dCwGHUDwJSGlFKUaBVLMmgWR0Cl3WJRXOnmdX2UKGgGaAloD0MIkbdc/dgk7b+UhpRSlGgVSzJoFkdApd8mCuloDnV9lChoBmgJaA9DCEKygAncOua/lIaUUpRoFUsyaBZHQKXe5CHh0hh1fZQoaAZoCWgPQwinH9RFCqUHwJSGlFKUaBVLMmgWR0Cl3qbvoePrdX2UKGgGaAloD0MIEYyDS8dc+L+UhpRSlGgVSzJoFkdApd5qol2NenV9lChoBmgJaA9DCLsKKT+pthDAlIaUUpRoFUsyaBZHQKXgL0nw5Np1fZQoaAZoCWgPQwigbMoV3qUJwJSGlFKUaBVLMmgWR0Cl3+1n/T9bdX2UKGgGaAloD0MIZJP8iF8x7b+UhpRSlGgVSzJoFkdApd+wOe8PF3V9lChoBmgJaA9DCMnIWdjT7gTAlIaUUpRoFUsyaBZHQKXfc+VTrE91fZQoaAZoCWgPQwgxlBPtKiT+v5SGlFKUaBVLMmgWR0Cl4UAHVwxWdX2UKGgGaAloD0MII6DCEaSSAMCUhpRSlGgVSzJoFkdApeD+NHYpUnV9lChoBmgJaA9DCPUvSWWKOeC/lIaUUpRoFUsyaBZHQKXgwQvpQk51fZQoaAZoCWgPQwgWFAZlGk3wv5SGlFKUaBVLMmgWR0Cl4ITBqKxcdX2UKGgGaAloD0MIXaj8a3kFEcCUhpRSlGgVSzJoFkdApeJVEkSmInV9lChoBmgJaA9DCFDDt7Bu3AzAlIaUUpRoFUsyaBZHQKXiE0uUUwl1fZQoaAZoCWgPQwgSMSWS6EUPwJSGlFKUaBVLMmgWR0Cl4dYAsCkodX2UKGgGaAloD0MIrTQpBd3eCMCUhpRSlGgVSzJoFkdApeGZmkFfRnV9lChoBmgJaA9DCLEUyVcCyQPAlIaUUpRoFUsyaBZHQKXjadH2AXl1fZQoaAZoCWgPQwilMVpHVTMFwJSGlFKUaBVLMmgWR0Cl4yfsmfGudX2UKGgGaAloD0MIGvuSjQc7BMCUhpRSlGgVSzJoFkdApeLqrNnoPnV9lChoBmgJaA9DCA1v1uB9lfW/lIaUUpRoFUsyaBZHQKXirmNBF/h1fZQoaAZoCWgPQwi5xJEHIqsLwJSGlFKUaBVLMmgWR0Cl5HX6hxo7dX2UKGgGaAloD0MIdlCJ6xjXAcCUhpRSlGgVSzJoFkdApeQ0CcPOIXV9lChoBmgJaA9DCOT5DKg3I/K/lIaUUpRoFUsyaBZHQKXj9qoIfKZ1fZQoaAZoCWgPQwgIyQImcCsVwJSGlFKUaBVLMmgWR0Cl47pUxVQzdX2UKGgGaAloD0MIHAx1WOHW87+UhpRSlGgVSzJoFkdApeWhFspG4XV9lChoBmgJaA9DCG1zY3rCEt6/lIaUUpRoFUsyaBZHQKXlYBiCrcV1fZQoaAZoCWgPQwiBmIQLeeQUwJSGlFKUaBVLMmgWR0Cl5SOq//NrdX2UKGgGaAloD0MIPrDjv0BQ97+UhpRSlGgVSzJoFkdApeToHE/B33V9lChoBmgJaA9DCN4ehIB8ifK/lIaUUpRoFUsyaBZHQKXnT73wkPd1fZQoaAZoCWgPQwj3d7ZHb7gCwJSGlFKUaBVLMmgWR0Cl5w7iZOSGdX2UKGgGaAloD0MI22tB740pIMCUhpRSlGgVSzJoFkdApebSg5BC2XV9lChoBmgJaA9DCIKpZtZSiCLAlIaUUpRoFUsyaBZHQKXml1/2Cd11fZQoaAZoCWgPQwiYiLfOv934v5SGlFKUaBVLMmgWR0Cl6RTYEnstdX2UKGgGaAloD0MIo1uv6UGB+b+UhpRSlGgVSzJoFkdApejTtgKF7HV9lChoBmgJaA9DCLMJMCx/PuG/lIaUUpRoFUsyaBZHQKXol0dRzil1fZQoaAZoCWgPQwiHhsWoa+3pv5SGlFKUaBVLMmgWR0Cl6FvYnOSodX2UKGgGaAloD0MIBi0kYHRZD8CUhpRSlGgVSzJoFkdApeq/nQpnYnV9lChoBmgJaA9DCM43onvWtQTAlIaUUpRoFUsyaBZHQKXqfdWQwK11fZQoaAZoCWgPQwi7mjxlNf0FwJSGlFKUaBVLMmgWR0Cl6kDG1hLHdX2UKGgGaAloD0MIQPuRIjJs9b+UhpRSlGgVSzJoFkdApeoErRSgoXV9lChoBmgJaA9DCCHM7V7uMwnAlIaUUpRoFUsyaBZHQKXr60GeMAF1fZQoaAZoCWgPQwjIBtLFpvUGwJSGlFKUaBVLMmgWR0Cl66lhoduHdX2UKGgGaAloD0MIlbpkHCMZAsCUhpRSlGgVSzJoFkdApetsOPNmlXV9lChoBmgJaA9DCFtB0xIrkxfAlIaUUpRoFUsyaBZHQKXrMAHVwxZ1fZQoaAZoCWgPQwgcti3KbPAOwJSGlFKUaBVLMmgWR0Cl7PuBDohZdX2UKGgGaAloD0MIKXgKuVIvCcCUhpRSlGgVSzJoFkdApey5d6cAinV9lChoBmgJaA9DCMe6uI0G8PG/lIaUUpRoFUsyaBZHQKXsfECvHLl1fZQoaAZoCWgPQwi/J9ap8l0DwJSGlFKUaBVLMmgWR0Cl7EAOz6acdX2UKGgGaAloD0MI2ucxyjMPAsCUhpRSlGgVSzJoFkdApe4SB9TgmHV9lChoBmgJaA9DCLRYiuQrQf6/lIaUUpRoFUsyaBZHQKXt0EB8x9J1fZQoaAZoCWgPQwjt8UI6PMT7v5SGlFKUaBVLMmgWR0Cl7ZMfzSThdX2UKGgGaAloD0MIiuWWVkPi7r+UhpRSlGgVSzJoFkdApe1XDUExI3V9lChoBmgJaA9DCDeJQWDl0AHAlIaUUpRoFUsyaBZHQKXvIpCrtE51fZQoaAZoCWgPQwi9GqA01AgAwJSGlFKUaBVLMmgWR0Cl7uBvR7Z4dX2UKGgGaAloD0MIzt+EQgS8EMCUhpRSlGgVSzJoFkdApe6jJW/8EXV9lChoBmgJaA9DCAyx+iMMgwTAlIaUUpRoFUsyaBZHQKXuZu+AVfx1fZQoaAZoCWgPQwgkJT0MrW4EwJSGlFKUaBVLMmgWR0Cl8DpFb3XadX2UKGgGaAloD0MIgPJ376ix47+UhpRSlGgVSzJoFkdApe/4ZydWhnV9lChoBmgJaA9DCC9vDtdqTwLAlIaUUpRoFUsyaBZHQKXvuzdk8Rt1fZQoaAZoCWgPQwg7wmnBi773v5SGlFKUaBVLMmgWR0Cl738Gkep5dX2UKGgGaAloD0MI/YUeMXrOFMCUhpRSlGgVSzJoFkdApfFKCL/CInV9lChoBmgJaA9DCAAce/Zcpv6/lIaUUpRoFUsyaBZHQKXxCDYAbQ11fZQoaAZoCWgPQwg8TtGRXI4SwJSGlFKUaBVLMmgWR0Cl8MsVDa4+dX2UKGgGaAloD0MITYOieQAbEsCUhpRSlGgVSzJoFkdApfCO2kSElHV9lChoBmgJaA9DCC13ZoLhXOy/lIaUUpRoFUsyaBZHQKXyXG5tm+V1fZQoaAZoCWgPQwiDMo0mF2Ptv5SGlFKUaBVLMmgWR0Cl8hp/gBLgdX2UKGgGaAloD0MIrYbEPZaOEsCUhpRSlGgVSzJoFkdApfHdKZlWfnV9lChoBmgJaA9DCH2zzY3pqQzAlIaUUpRoFUsyaBZHQKXxoOT7l7t1fZQoaAZoCWgPQwiPVUrP9JINwJSGlFKUaBVLMmgWR0Cl82zCDVYqdX2UKGgGaAloD0MISwLU1LK15b+UhpRSlGgVSzJoFkdApfMq7kGRm3V9lChoBmgJaA9DCGhBKO/j6AnAlIaUUpRoFUsyaBZHQKXy7bA1vVF1fZQoaAZoCWgPQwhzg6EOK5z1v5SGlFKUaBVLMmgWR0Cl8rGOMl1KdX2UKGgGaAloD0MIaMu5FFcVAMCUhpRSlGgVSzJoFkdApfSGnwXqJXV9lChoBmgJaA9DCCqtvyUAfxrAlIaUUpRoFUsyaBZHQKX0RKAavRt1fZQoaAZoCWgPQwjWAntMpHT9v5SGlFKUaBVLMmgWR0Cl9AdoN/e+dX2UKGgGaAloD0MIPsqIC0Aj4b+UhpRSlGgVSzJoFkdApfPL48EFGHV9lChoBmgJaA9DCAXDuYYZWgXAlIaUUpRoFUsyaBZHQKX1m0jTrmh1fZQoaAZoCWgPQwiTN8DMd3ABwJSGlFKUaBVLMmgWR0Cl9VmE4//vdX2UKGgGaAloD0MIUvNV8rH7BsCUhpRSlGgVSzJoFkdApfUcP8Q7LnV9lChoBmgJaA9DCK5kx0YgHgPAlIaUUpRoFUsyaBZHQKX04CVbA1x1fZQoaAZoCWgPQwgf8parH1v4v5SGlFKUaBVLMmgWR0Cl9rZqubI+dX2UKGgGaAloD0MIkdRCyeR0BcCUhpRSlGgVSzJoFkdApfZ0nCwbEXV9lChoBmgJaA9DCNnNjH40fAPAlIaUUpRoFUsyaBZHQKX2N3mFJxx1fZQoaAZoCWgPQwiXcr7Ye5EHwJSGlFKUaBVLMmgWR0Cl9fs0gr6MdX2UKGgGaAloD0MIIjMXuDwW8r+UhpRSlGgVSzJoFkdApffMKE3843V9lChoBmgJaA9DCK1tisdFNQXAlIaUUpRoFUsyaBZHQKX3ijs2NvR1fZQoaAZoCWgPQwgpr5XQXbIOwJSGlFKUaBVLMmgWR0Cl90z/6wdKdX2UKGgGaAloD0MIfTz03a1cEMCUhpRSlGgVSzJoFkdApfcQpnYg73V9lChoBmgJaA9DCOP74lKVFg/AlIaUUpRoFUsyaBZHQKX46iQkond1fZQoaAZoCWgPQwgAGxAhrlz2v5SGlFKUaBVLMmgWR0Cl+Khmf5DadX2UKGgGaAloD0MI7Bfshm37EMCUhpRSlGgVSzJoFkdApfhrSofjj3V9lChoBmgJaA9DCHpsy4CzFO6/lIaUUpRoFUsyaBZHQKX4Lz/6wdN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78838842d750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78838841f5c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690437645798979876, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJs7aPq+xazxHUww/Js7aPq+xazxHUww/Js7aPq+xazxHUww/Js7aPq+xazxHUww/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6FuXPvPgQT+81LO+JaxlP14Ihb5JMMS/7Ge4P/7vD76rYo4/7D5rvbb1KL/lywU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTwmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTwmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTwmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42735404 0.01438562 0.5481457 ]\n [0.42735404 0.01438562 0.5481457 ]\n [0.42735404 0.01438562 0.5481457 ]\n [0.42735404 0.01438562 0.5481457 ]]", "desired_goal": "[[ 0.29562306 0.7573387 -0.3512324 ]\n [ 0.89715797 -0.25982946 -1.5327235 ]\n [ 1.4406714 -0.14056394 1.1123861 ]\n [-0.05743305 -0.65999925 0.52264243]]", "observation": "[[ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]\n [ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]\n [ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]\n [ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVhUFPdfVBz4fkk0+lac9vfNeFz5YR7Y9Ch74vRJjGL4x54k+UmDbPOuCiL0NKH4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03249105 0.13265167 0.20075272]\n [-0.0463024 0.14782314 0.08900326]\n [-0.12115104 -0.14881542 0.26934198]\n [ 0.02677933 -0.06665596 0.24819966]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXcXiN4WVB8CUhpRSlIwBbJRLMowBdJRHQKaZLLlFMIx1fZQoaAZoCWgPQwgiNlg4STMDwJSGlFKUaBVLMmgWR0CmmPPOyE+QdX2UKGgGaAloD0MIiXyXUpeM+7+UhpRSlGgVSzJoFkdAppi7C79Q43V9lChoBmgJaA9DCOBJC5dVCBHAlIaUUpRoFUsyaBZHQKaYgk9ECvJ1fZQoaAZoCWgPQwj5oGez6nMGwJSGlFKUaBVLMmgWR0CmmrR95QgtdX2UKGgGaAloD0MIlsyxvKu+DsCUhpRSlGgVSzJoFkdAppp7dvbXYnV9lChoBmgJaA9DCLO0U3O5QQfAlIaUUpRoFUsyaBZHQKaaQoybhFV1fZQoaAZoCWgPQwgy422l18YKwJSGlFKUaBVLMmgWR0CmmgnkT6BRdX2UKGgGaAloD0MI9PxpozodBsCUhpRSlGgVSzJoFkdAppxRWDHwPXV9lChoBmgJaA9DCMBeYcH94AnAlIaUUpRoFUsyaBZHQKacGEDhcZ91fZQoaAZoCWgPQwjMtz6sNzoWwJSGlFKUaBVLMmgWR0Cmm98Wj45+dX2UKGgGaAloD0MIbCbfbHPDAMCUhpRSlGgVSzJoFkdAppunNPgvUXV9lChoBmgJaA9DCG8QrRVtLgfAlIaUUpRoFUsyaBZHQKadTR7Z39t1fZQoaAZoCWgPQwgSM/s8RjkOwJSGlFKUaBVLMmgWR0CmnRNjLB9DdX2UKGgGaAloD0MIVb/S+fCsA8CUhpRSlGgVSzJoFkdAppzZ1RtP6HV9lChoBmgJaA9DCHl0Iywqgg/AlIaUUpRoFUsyaBZHQKacoFj/dZd1fZQoaAZoCWgPQwgYfJqTFxn1v5SGlFKUaBVLMmgWR0CmnjfWMCLddX2UKGgGaAloD0MIM+IC0Cjd/b+UhpRSlGgVSzJoFkdApp3+DjBEa3V9lChoBmgJaA9DCFor2hzndvW/lIaUUpRoFUsyaBZHQKadxJwsGxF1fZQoaAZoCWgPQwiwAny3eSP7v5SGlFKUaBVLMmgWR0CmnYsIE8q4dX2UKGgGaAloD0MIcLGiBtOw9r+UhpRSlGgVSzJoFkdApp8mWdEsrnV9lChoBmgJaA9DCACMZ9DQv/S/lIaUUpRoFUsyaBZHQKae7KnvUjN1fZQoaAZoCWgPQwgAyt+9o+YAwJSGlFKUaBVLMmgWR0CmnrL39JjEdX2UKGgGaAloD0MIAKq4cYvZFsCUhpRSlGgVSzJoFkdApp55jpcHGHV9lChoBmgJaA9DCCmwAKYMHPu/lIaUUpRoFUsyaBZHQKagGYxcmjV1fZQoaAZoCWgPQwi3RC44g/8PwJSGlFKUaBVLMmgWR0Cmn9/0dzXCdX2UKGgGaAloD0MIHcpQFVMp+b+UhpRSlGgVSzJoFkdApp+mYKIBR3V9lChoBmgJaA9DCAT/W8mOzQ/AlIaUUpRoFUsyaBZHQKafbNhVlwt1fZQoaAZoCWgPQwifVWZK608HwJSGlFKUaBVLMmgWR0CmoQOlXRw7dX2UKGgGaAloD0MIaqFkcmonGcCUhpRSlGgVSzJoFkdApqDKBkI5YHV9lChoBmgJaA9DCN8ZbVUSuQvAlIaUUpRoFUsyaBZHQKagkIVuaWp1fZQoaAZoCWgPQwiQZiyazo71v5SGlFKUaBVLMmgWR0CmoFc3++/QdX2UKGgGaAloD0MIVkrP9BLj/L+UhpRSlGgVSzJoFkdApqHwjhUBGXV9lChoBmgJaA9DCFTm5hvRrRXAlIaUUpRoFUsyaBZHQKahtvRZ2ZB1fZQoaAZoCWgPQwh+cD51rIIQwJSGlFKUaBVLMmgWR0CmoX1E/jbSdX2UKGgGaAloD0MItyqJ7IOsEMCUhpRSlGgVSzJoFkdApqFDot+TeXV9lChoBmgJaA9DCFRzucFQR/e/lIaUUpRoFUsyaBZHQKai2bwz+FV1fZQoaAZoCWgPQwj5vrhUpV0YwJSGlFKUaBVLMmgWR0CmoqB1klNUdX2UKGgGaAloD0MIzqrP1VYsCMCUhpRSlGgVSzJoFkdApqJnPNVzZHV9lChoBmgJaA9DCM1bdR2qqQzAlIaUUpRoFUsyaBZHQKaiLjbzshR1fZQoaAZoCWgPQwgRqWkX00wPwJSGlFKUaBVLMmgWR0Cmo8KHfuTidX2UKGgGaAloD0MIyR02kZnLFcCUhpRSlGgVSzJoFkdApqOJH7P6bnV9lChoBmgJaA9DCMLdWbvtwgTAlIaUUpRoFUsyaBZHQKajT2vB7/p1fZQoaAZoCWgPQwgCYhIu5FEAwJSGlFKUaBVLMmgWR0CmoxXyRSxadX2UKGgGaAloD0MIdVjhlo9k+b+UhpRSlGgVSzJoFkdApqSjjPv8ZXV9lChoBmgJaA9DCLFSQUXVjwHAlIaUUpRoFUsyaBZHQKakacc2itd1fZQoaAZoCWgPQwih9ls7URL5v5SGlFKUaBVLMmgWR0CmpDAe7tiQdX2UKGgGaAloD0MIe/Xx0Hd3AMCUhpRSlGgVSzJoFkdApqP2kFfReHV9lChoBmgJaA9DCJ2huONNPgPAlIaUUpRoFUsyaBZHQKalh9pAUtZ1fZQoaAZoCWgPQwjWxtgJL2EGwJSGlFKUaBVLMmgWR0CmpU4Zl4C7dX2UKGgGaAloD0MIqtctAmOdDsCUhpRSlGgVSzJoFkdApqUUY64lQnV9lChoBmgJaA9DCMZRuYlaWgLAlIaUUpRoFUsyaBZHQKak2tcv/R51fZQoaAZoCWgPQwgOn3QiwTQBwJSGlFKUaBVLMmgWR0CmpnY3vQWvdX2UKGgGaAloD0MIs/D1tS41DsCUhpRSlGgVSzJoFkdApqY8v24/eXV9lChoBmgJaA9DCB7+mqxRz/2/lIaUUpRoFUsyaBZHQKamAw5eZ5R1fZQoaAZoCWgPQwhczM8NTRkFwJSGlFKUaBVLMmgWR0Cmpcm9HtngdX2UKGgGaAloD0MIho+IKZHEFMCUhpRSlGgVSzJoFkdApqdigPEsKHV9lChoBmgJaA9DCMed0sH6PwXAlIaUUpRoFUsyaBZHQKanKNVinYR1fZQoaAZoCWgPQwgWwmosYe0DwJSGlFKUaBVLMmgWR0Cmpu9BBzFNdX2UKGgGaAloD0MId9hEZi7w+b+UhpRSlGgVSzJoFkdApqa10YCQtHV9lChoBmgJaA9DCPTAx2DF6QvAlIaUUpRoFUsyaBZHQKaoXkNnXd11fZQoaAZoCWgPQwgP7s7abdfzv5SGlFKUaBVLMmgWR0CmqCSHmA9WdX2UKGgGaAloD0MIRRDn4QQmD8CUhpRSlGgVSzJoFkdApqfq1og3cnV9lChoBmgJaA9DCEph3uNMUxLAlIaUUpRoFUsyaBZHQKansadc0Lt1fZQoaAZoCWgPQwh24JwRpd0FwJSGlFKUaBVLMmgWR0CmqT8DSw4bdX2UKGgGaAloD0MIBd1e0hhtBsCUhpRSlGgVSzJoFkdApqkFRaX8fnV9lChoBmgJaA9DCBCTcCGPIPa/lIaUUpRoFUsyaBZHQKaoy6DoQnR1fZQoaAZoCWgPQwg6Pe/GgkL2v5SGlFKUaBVLMmgWR0CmqJIi9qUNdX2UKGgGaAloD0MITUnW4ejq/L+UhpRSlGgVSzJoFkdApqohQvYe1nV9lChoBmgJaA9DCKD7cma7ogDAlIaUUpRoFUsyaBZHQKap55JK8L91fZQoaAZoCWgPQwiP39v0Zx8HwJSGlFKUaBVLMmgWR0Cmqa3cHnlodX2UKGgGaAloD0MIuoPYmUIHAsCUhpRSlGgVSzJoFkdApql0VWS2Y3V9lChoBmgJaA9DCMHHYMWpFg3AlIaUUpRoFUsyaBZHQKarAYF7laN1fZQoaAZoCWgPQwh39pUH6WkBwJSGlFKUaBVLMmgWR0CmqsgSWZ7YdX2UKGgGaAloD0MITBk4oKWrA8CUhpRSlGgVSzJoFkdApqqPEjxCpnV9lChoBmgJaA9DCBO6S+KsaAbAlIaUUpRoFUsyaBZHQKaqViLEUCd1fZQoaAZoCWgPQwidoE0On5QNwJSGlFKUaBVLMmgWR0Cmq+srd30PdX2UKGgGaAloD0MIlIYahSTzDsCUhpRSlGgVSzJoFkdApquxceKba3V9lChoBmgJaA9DCHB7gsR29xXAlIaUUpRoFUsyaBZHQKard8kUsWh1fZQoaAZoCWgPQwgeNSbEXBIKwJSGlFKUaBVLMmgWR0Cmqz5Cv5gxdX2UKGgGaAloD0MIdENTdvoBB8CUhpRSlGgVSzJoFkdApqzFShrWRXV9lChoBmgJaA9DCBtJgnAFdBPAlIaUUpRoFUsyaBZHQKasi2mYSg51fZQoaAZoCWgPQwjohNBBl3D+v5SGlFKUaBVLMmgWR0CmrFHNHH3ldX2UKGgGaAloD0MIl6sfm+THBsCUhpRSlGgVSzJoFkdApqwYTfzjFXV9lChoBmgJaA9DCN0m3Cvz9gDAlIaUUpRoFUsyaBZHQKatpr3TNMZ1fZQoaAZoCWgPQwgtX5fhP30PwJSGlFKUaBVLMmgWR0CmrW0F8ohIdX2UKGgGaAloD0MIXvdWJCZoA8CUhpRSlGgVSzJoFkdApq0ziEQGwHV9lChoBmgJaA9DCNAoXfqXBBbAlIaUUpRoFUsyaBZHQKas+hzvJBB1fZQoaAZoCWgPQwg9gEV+/fALwJSGlFKUaBVLMmgWR0Cmroibc45tdX2UKGgGaAloD0MIk6rtJvgmE8CUhpRSlGgVSzJoFkdApq5O3QUpNXV9lChoBmgJaA9DCNAPI4RHSxDAlIaUUpRoFUsyaBZHQKauFSEUTL51fZQoaAZoCWgPQwgROBJosIkEwJSGlFKUaBVLMmgWR0Cmrdt9QXQ/dX2UKGgGaAloD0MImtAksaR8BcCUhpRSlGgVSzJoFkdApq9rSXt0FXV9lChoBmgJaA9DCF/ObFfowwnAlIaUUpRoFUsyaBZHQKavMa5wwTN1fZQoaAZoCWgPQwi70cd8QOAewJSGlFKUaBVLMmgWR0CmrvgoXsPbdX2UKGgGaAloD0MICWzOwTMh/7+UhpRSlGgVSzJoFkdApq6+lwcYInV9lChoBmgJaA9DCFAZ/z7jkhTAlIaUUpRoFUsyaBZHQKawTZg5R0l1fZQoaAZoCWgPQwgq499nXCgcwJSGlFKUaBVLMmgWR0CmsBPQ4S6EdX2UKGgGaAloD0MIgv5Cjxi9CcCUhpRSlGgVSzJoFkdApq/aJTER8XV9lChoBmgJaA9DCN20Gach6gLAlIaUUpRoFUsyaBZHQKavoIWxhUl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -3.5205472847912462, "std_reward": 0.9949955558841538, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-27T07:02:54.713949"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae7929978659984c41613dd63552af7ef94b072e6db576561d158d06cde1417c
|
3 |
size 2387
|