Sentence Similarity
Safetensors
English
bert
SalmanFaroz commited on
Commit
45503f5
·
verified ·
1 Parent(s): cead9f7

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:225245
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: BAAI/bge-small-en-v1.5
13
+ widget:
14
+ - source_sentence: Infections affecting the acromioclavicular joint can present with
15
+ symptoms such as shoulder pain, swelling, and potential fever. Patients may experience
16
+ systemic signs of infection, including chills and malaise, alongside localized
17
+ symptoms related to joint movement.
18
+ sentences:
19
+ - Gastric stromal tumors with uncertain behavior can present with symptoms such
20
+ as abdominal pain, nausea, and changes in appetite. Patients may experience psychological
21
+ distress due to concerns about malignancy and the need for further evaluation.
22
+ The presence of these tumors can lead to complications depending on their size
23
+ and location.
24
+ - 'Disease Name : Complication, umbrella device, vascular, embolism'
25
+ - 'Disease Name : Infection, infected, infective, acromioclavicular'
26
+ - source_sentence: 'cyanosis: a bluish discoloration of the skin; fatigue: extreme
27
+ tiredness; shortness of breath: difficulty in breathing; headache: pain in the
28
+ head; confusion: difficulty in thinking clearly.'
29
+ sentences:
30
+ - 'Disease Name : Anomaly, anomalous, spine, spinal NEC, column NEC, kyphosis'
31
+ - 'Disease Name : Methemoglobinemia, Hb M disease'
32
+ - Superficial insect bites on the finger can lead to localized swelling, redness,
33
+ and itching. Patients may experience discomfort and potential allergic reactions,
34
+ requiring symptomatic treatment.
35
+ - source_sentence: 'Disease Name : Excess, excessive, excessively, crying, in infant'
36
+ sentences:
37
+ - Excessive crying in infants can manifest as prolonged periods of distress, often
38
+ accompanied by signs of discomfort such as clenching fists, arching of the back,
39
+ and difficulty in soothing. The infant may exhibit a high-pitched cry and may
40
+ seem inconsolable, leading to parental concern and anxiety about the child's well-being.
41
+ - 'Disease Name : Syphilis, syphilitic, meningitis'
42
+ - 'Disease Name : Prolapse, prolapsed, ileostomy bud'
43
+ - source_sentence: Cysts affecting the lacrimal passages or sac can lead to symptoms
44
+ such as tearing, swelling, and discomfort in the inner corner of the eye. Patients
45
+ may experience recurrent infections, redness, and a sensation of fullness, which
46
+ can significantly impact tear drainage and overall eye health.
47
+ sentences:
48
+ - A condition characterized by the fusion of a single suture can lead to various
49
+ physical deformities and developmental challenges. Symptoms may include cognitive
50
+ impairment and various physical challenges that can impact daily life.
51
+ - 'Disease Name : Cyst, Lacrimal, Passages or Sac'
52
+ - This condition presents with swelling and pain in the area of the placenta, often
53
+ accompanied by tenderness and discomfort. Patients may experience complications
54
+ during pregnancy, including bleeding and changes in fetal movement. In some cases,
55
+ there may be associated risks to both the mother and the fetus.
56
+ - source_sentence: 'Disease Name : Tuberculosis, tubercular, tuberculous, brain'
57
+ sentences:
58
+ - 'hoarseness: abnormal voice quality due to vocal cord dysfunction; difficulty
59
+ breathing: shortness of breath or stridor from airway compression; loss of voice:
60
+ inability to speak due to vocal cord paralysis; throat discomfort: pain or irritation
61
+ in the throat area.'
62
+ - Symptoms include cough, wheezing, and difficulty breathing, often exacerbated
63
+ by exposure to specific environmental triggers such as air conditioning systems.
64
+ Patients may also experience fever and malaise, with a history of allergic reactions
65
+ or asthma. The condition can lead to significant respiratory distress if not managed
66
+ appropriately.
67
+ - Symptoms often include headaches, confusion, and potential neurological deficits,
68
+ along with systemic signs such as fever and fatigue. Patients may also experience
69
+ seizures or altered consciousness, indicating a serious underlying condition.
70
+ pipeline_tag: sentence-similarity
71
+ library_name: sentence-transformers
72
+ ---
73
+
74
+ # bge-small-en
75
+
76
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
77
+
78
+ ## Model Details
79
+
80
+ ### Model Description
81
+ - **Model Type:** Sentence Transformer
82
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
83
+ - **Maximum Sequence Length:** 512 tokens
84
+ - **Output Dimensionality:** 384 dimensions
85
+ - **Similarity Function:** Cosine Similarity
86
+ <!-- - **Training Dataset:** Unknown -->
87
+ - **Language:** en
88
+ - **License:** mit
89
+
90
+ ### Model Sources
91
+
92
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
93
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
94
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
95
+
96
+ ### Full Model Architecture
97
+
98
+ ```
99
+ SentenceTransformer(
100
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
101
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
102
+ (2): Normalize()
103
+ )
104
+ ```
105
+
106
+ ## Usage
107
+
108
+ ### Direct Usage (Sentence Transformers)
109
+
110
+ First install the Sentence Transformers library:
111
+
112
+ ```bash
113
+ pip install -U sentence-transformers
114
+ ```
115
+
116
+ Then you can load this model and run inference.
117
+ ```python
118
+ from sentence_transformers import SentenceTransformer
119
+
120
+ # Download from the 🤗 Hub
121
+ model = SentenceTransformer("SalmanFaroz/DisEmbed-v1")
122
+ # Run inference
123
+ sentences = [
124
+ 'Disease Name : Tuberculosis, tubercular, tuberculous, brain',
125
+ 'Symptoms often include headaches, confusion, and potential neurological deficits, along with systemic signs such as fever and fatigue. Patients may also experience seizures or altered consciousness, indicating a serious underlying condition.',
126
+ 'Symptoms include cough, wheezing, and difficulty breathing, often exacerbated by exposure to specific environmental triggers such as air conditioning systems. Patients may also experience fever and malaise, with a history of allergic reactions or asthma. The condition can lead to significant respiratory distress if not managed appropriately.',
127
+ ]
128
+ embeddings = model.encode(sentences)
129
+ print(embeddings.shape)
130
+ # [3, 384]
131
+
132
+ # Get the similarity scores for the embeddings
133
+ similarities = model.similarity(embeddings, embeddings)
134
+ print(similarities.shape)
135
+ # [3, 3]
136
+ ```
137
+
138
+ <!--
139
+ ### Direct Usage (Transformers)
140
+
141
+ <details><summary>Click to see the direct usage in Transformers</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Downstream Usage (Sentence Transformers)
148
+
149
+ You can finetune this model on your own dataset.
150
+
151
+ <details><summary>Click to expand</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Out-of-Scope Use
158
+
159
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
160
+ -->
161
+
162
+ <!--
163
+ ## Bias, Risks and Limitations
164
+
165
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
166
+ -->
167
+
168
+ <!--
169
+ ### Recommendations
170
+
171
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
172
+ -->
173
+
174
+ ## Training Details
175
+
176
+ ### Training Dataset
177
+
178
+ #### Unnamed Dataset
179
+
180
+
181
+ * Size: 225,245 training samples
182
+ * Columns: <code>0</code> and <code>1</code>
183
+ * Approximate statistics based on the first 1000 samples:
184
+ | | 0 | 1 |
185
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
186
+ | type | string | string |
187
+ | details | <ul><li>min: 6 tokens</li><li>mean: 35.19 tokens</li><li>max: 347 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 34.92 tokens</li><li>max: 281 tokens</li></ul> |
188
+ * Samples:
189
+ | 0 | 1 |
190
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
191
+ | <code>Disease Name : Lymphadenitis, due to, diphtheria</code> | <code>This condition involves lymphadenitis due to diphtheria infection, leading to symptoms such as swelling, tenderness, and potential pain in the lymph nodes. Patients may experience systemic symptoms like fever and malaise, indicating an underlying issue that requires attention. Complications can arise if the condition is not managed properly.</code> |
192
+ | <code>nephropathy: kidney damage or disease; proteinuria: presence of excess protein in urine; edema: swelling due to fluid retention; ...</code> | <code>Disease Name : Nephropathy, phosphate-losing</code> |
193
+ | <code>Disease Name : Cyst, renal</code> | <code>Renal cysts can lead to symptoms such as flank pain, hematuria, and potential urinary obstruction. If these cysts become infected, they may present with fever, chills, and significant discomfort in the abdominal or back regions.</code> |
194
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
195
+ ```json
196
+ {
197
+ "scale": 20.0,
198
+ "similarity_fct": "cos_sim"
199
+ }
200
+ ```
201
+
202
+ ### Training Hyperparameters
203
+ #### Non-Default Hyperparameters
204
+
205
+ - `per_device_train_batch_size`: 122
206
+ - `per_device_eval_batch_size`: 122
207
+ - `learning_rate`: 2e-05
208
+ - `num_train_epochs`: 1
209
+ - `warmup_ratio`: 0.1
210
+ - `fp16`: True
211
+ - `batch_sampler`: no_duplicates
212
+
213
+ #### All Hyperparameters
214
+ <details><summary>Click to expand</summary>
215
+
216
+ - `overwrite_output_dir`: False
217
+ - `do_predict`: False
218
+ - `eval_strategy`: no
219
+ - `prediction_loss_only`: True
220
+ - `per_device_train_batch_size`: 122
221
+ - `per_device_eval_batch_size`: 122
222
+ - `per_gpu_train_batch_size`: None
223
+ - `per_gpu_eval_batch_size`: None
224
+ - `gradient_accumulation_steps`: 1
225
+ - `eval_accumulation_steps`: None
226
+ - `torch_empty_cache_steps`: None
227
+ - `learning_rate`: 2e-05
228
+ - `weight_decay`: 0.0
229
+ - `adam_beta1`: 0.9
230
+ - `adam_beta2`: 0.999
231
+ - `adam_epsilon`: 1e-08
232
+ - `max_grad_norm`: 1.0
233
+ - `num_train_epochs`: 1
234
+ - `max_steps`: -1
235
+ - `lr_scheduler_type`: linear
236
+ - `lr_scheduler_kwargs`: {}
237
+ - `warmup_ratio`: 0.1
238
+ - `warmup_steps`: 0
239
+ - `log_level`: passive
240
+ - `log_level_replica`: warning
241
+ - `log_on_each_node`: True
242
+ - `logging_nan_inf_filter`: True
243
+ - `save_safetensors`: True
244
+ - `save_on_each_node`: False
245
+ - `save_only_model`: False
246
+ - `restore_callback_states_from_checkpoint`: False
247
+ - `no_cuda`: False
248
+ - `use_cpu`: False
249
+ - `use_mps_device`: False
250
+ - `seed`: 42
251
+ - `data_seed`: None
252
+ - `jit_mode_eval`: False
253
+ - `use_ipex`: False
254
+ - `bf16`: False
255
+ - `fp16`: True
256
+ - `fp16_opt_level`: O1
257
+ - `half_precision_backend`: auto
258
+ - `bf16_full_eval`: False
259
+ - `fp16_full_eval`: False
260
+ - `tf32`: None
261
+ - `local_rank`: 0
262
+ - `ddp_backend`: None
263
+ - `tpu_num_cores`: None
264
+ - `tpu_metrics_debug`: False
265
+ - `debug`: []
266
+ - `dataloader_drop_last`: False
267
+ - `dataloader_num_workers`: 0
268
+ - `dataloader_prefetch_factor`: None
269
+ - `past_index`: -1
270
+ - `disable_tqdm`: False
271
+ - `remove_unused_columns`: True
272
+ - `label_names`: None
273
+ - `load_best_model_at_end`: False
274
+ - `ignore_data_skip`: False
275
+ - `fsdp`: []
276
+ - `fsdp_min_num_params`: 0
277
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
278
+ - `fsdp_transformer_layer_cls_to_wrap`: None
279
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
280
+ - `deepspeed`: None
281
+ - `label_smoothing_factor`: 0.0
282
+ - `optim`: adamw_torch
283
+ - `optim_args`: None
284
+ - `adafactor`: False
285
+ - `group_by_length`: False
286
+ - `length_column_name`: length
287
+ - `ddp_find_unused_parameters`: None
288
+ - `ddp_bucket_cap_mb`: None
289
+ - `ddp_broadcast_buffers`: False
290
+ - `dataloader_pin_memory`: True
291
+ - `dataloader_persistent_workers`: False
292
+ - `skip_memory_metrics`: True
293
+ - `use_legacy_prediction_loop`: False
294
+ - `push_to_hub`: False
295
+ - `resume_from_checkpoint`: None
296
+ - `hub_model_id`: None
297
+ - `hub_strategy`: every_save
298
+ - `hub_private_repo`: None
299
+ - `hub_always_push`: False
300
+ - `gradient_checkpointing`: False
301
+ - `gradient_checkpointing_kwargs`: None
302
+ - `include_inputs_for_metrics`: False
303
+ - `include_for_metrics`: []
304
+ - `eval_do_concat_batches`: True
305
+ - `fp16_backend`: auto
306
+ - `push_to_hub_model_id`: None
307
+ - `push_to_hub_organization`: None
308
+ - `mp_parameters`:
309
+ - `auto_find_batch_size`: False
310
+ - `full_determinism`: False
311
+ - `torchdynamo`: None
312
+ - `ray_scope`: last
313
+ - `ddp_timeout`: 1800
314
+ - `torch_compile`: False
315
+ - `torch_compile_backend`: None
316
+ - `torch_compile_mode`: None
317
+ - `dispatch_batches`: None
318
+ - `split_batches`: None
319
+ - `include_tokens_per_second`: False
320
+ - `include_num_input_tokens_seen`: False
321
+ - `neftune_noise_alpha`: None
322
+ - `optim_target_modules`: None
323
+ - `batch_eval_metrics`: False
324
+ - `eval_on_start`: False
325
+ - `use_liger_kernel`: False
326
+ - `eval_use_gather_object`: False
327
+ - `average_tokens_across_devices`: False
328
+ - `prompts`: None
329
+ - `batch_sampler`: no_duplicates
330
+ - `multi_dataset_batch_sampler`: proportional
331
+
332
+ </details>
333
+
334
+ ### Training Logs
335
+ | Epoch | Step | Training Loss |
336
+ |:------:|:----:|:-------------:|
337
+ | 0.0541 | 100 | 2.5621 |
338
+ | 0.1083 | 200 | 1.3308 |
339
+ | 0.1624 | 300 | 1.1403 |
340
+ | 0.2166 | 400 | 1.0506 |
341
+ | 0.2707 | 500 | 1.0135 |
342
+ | 0.3249 | 600 | 0.9443 |
343
+ | 0.3790 | 700 | 0.9412 |
344
+ | 0.4331 | 800 | 0.9095 |
345
+ | 0.4873 | 900 | 0.8945 |
346
+ | 0.5414 | 1000 | 0.8533 |
347
+ | 0.5956 | 1100 | 0.8601 |
348
+ | 0.6497 | 1200 | 0.8425 |
349
+ | 0.7038 | 1300 | 0.2919 |
350
+ | 0.7580 | 1400 | 0.0249 |
351
+ | 0.8121 | 1500 | 0.0231 |
352
+ | 0.8663 | 1600 | 0.0182 |
353
+ | 0.9204 | 1700 | 0.0206 |
354
+ | 0.9746 | 1800 | 0.0206 |
355
+ | 0.0541 | 100 | 0.8606 |
356
+ | 0.1083 | 200 | 0.7361 |
357
+ | 0.1624 | 300 | 0.6648 |
358
+ | 0.2166 | 400 | 0.6506 |
359
+ | 0.2707 | 500 | 0.6502 |
360
+ | 0.3249 | 600 | 0.6249 |
361
+ | 0.3790 | 700 | 0.6473 |
362
+ | 0.4331 | 800 | 0.6391 |
363
+ | 0.4873 | 900 | 0.6474 |
364
+ | 0.5414 | 1000 | 0.6316 |
365
+ | 0.5956 | 1100 | 0.6543 |
366
+ | 0.6497 | 1200 | 0.6493 |
367
+ | 0.7038 | 1300 | 0.2173 |
368
+ | 0.7580 | 1400 | 0.0135 |
369
+ | 0.8121 | 1500 | 0.0149 |
370
+ | 0.8663 | 1600 | 0.0128 |
371
+ | 0.9204 | 1700 | 0.0158 |
372
+ | 0.9746 | 1800 | 0.0169 |
373
+ | 0.0541 | 100 | 0.6698 |
374
+ | 0.1083 | 200 | 0.5107 |
375
+ | 0.1624 | 300 | 0.4378 |
376
+ | 0.2166 | 400 | 0.4408 |
377
+ | 0.2707 | 500 | 0.4452 |
378
+ | 0.3249 | 600 | 0.4391 |
379
+ | 0.3790 | 700 | 0.4672 |
380
+ | 0.4331 | 800 | 0.4712 |
381
+ | 0.4873 | 900 | 0.489 |
382
+ | 0.5414 | 1000 | 0.4878 |
383
+ | 0.5956 | 1100 | 0.5196 |
384
+ | 0.6497 | 1200 | 0.5245 |
385
+ | 0.7038 | 1300 | 0.1768 |
386
+ | 0.7580 | 1400 | 0.0091 |
387
+ | 0.8121 | 1500 | 0.0107 |
388
+ | 0.8663 | 1600 | 0.0099 |
389
+ | 0.9204 | 1700 | 0.0127 |
390
+ | 0.9746 | 1800 | 0.0147 |
391
+ | 0.0541 | 100 | 0.5605 |
392
+ | 0.1083 | 200 | 0.3476 |
393
+ | 0.1624 | 300 | 0.2772 |
394
+ | 0.2166 | 400 | 0.2862 |
395
+ | 0.2707 | 500 | 0.2937 |
396
+ | 0.3249 | 600 | 0.2983 |
397
+ | 0.3790 | 700 | 0.3293 |
398
+ | 0.4331 | 800 | 0.3421 |
399
+ | 0.4873 | 900 | 0.3634 |
400
+ | 0.5414 | 1000 | 0.3732 |
401
+ | 0.5956 | 1100 | 0.4125 |
402
+ | 0.6497 | 1200 | 0.4266 |
403
+ | 0.7038 | 1300 | 0.1474 |
404
+ | 0.7580 | 1400 | 0.007 |
405
+ | 0.8121 | 1500 | 0.0081 |
406
+ | 0.8663 | 1600 | 0.0079 |
407
+ | 0.9204 | 1700 | 0.0104 |
408
+ | 0.9746 | 1800 | 0.0132 |
409
+
410
+
411
+ ### Framework Versions
412
+ - Python: 3.10.12
413
+ - Sentence Transformers: 3.3.1
414
+ - Transformers: 4.47.0
415
+ - PyTorch: 2.1.0+cu118
416
+ - Accelerate: 1.2.1
417
+ - Datasets: 3.2.0
418
+ - Tokenizers: 0.21.0
419
+
420
+ ## Citation
421
+
422
+ ### BibTeX
423
+
424
+ #### Sentence Transformers
425
+ ```bibtex
426
+ @inproceedings{reimers-2019-sentence-bert,
427
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
428
+ author = "Reimers, Nils and Gurevych, Iryna",
429
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
430
+ month = "11",
431
+ year = "2019",
432
+ publisher = "Association for Computational Linguistics",
433
+ url = "https://arxiv.org/abs/1908.10084",
434
+ }
435
+ ```
436
+
437
+ #### MultipleNegativesRankingLoss
438
+ ```bibtex
439
+ @misc{henderson2017efficient,
440
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
441
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
442
+ year={2017},
443
+ eprint={1705.00652},
444
+ archivePrefix={arXiv},
445
+ primaryClass={cs.CL}
446
+ }
447
+ ```
448
+
449
+ <!--
450
+ ## Glossary
451
+
452
+ *Clearly define terms in order to be accessible across audiences.*
453
+ -->
454
+
455
+ <!--
456
+ ## Model Card Authors
457
+
458
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
459
+ -->
460
+
461
+ <!--
462
+ ## Model Card Contact
463
+
464
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
465
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "SalmanFaroz/DisEmbed-v1",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.46.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23cee5731f4992a1a26049fe68cb44b9581f0b64bc76c962b1e38db27795057d
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff