Upload 12 files
Browse files- CKPT.yaml +4 -0
- SLU2.py +1345 -0
- brain.ckpt +3 -0
- counter.ckpt +3 -0
- hyperparams.yaml +170 -0
- labelencoder.txt +113 -0
- lr_annealing.ckpt +3 -0
- lr_annealing_wav2vec.ckpt +3 -0
- model.ckpt +3 -0
- optimizer.ckpt +3 -0
- optimizer_wav2vec.ckpt +3 -0
- wav2vec.ckpt +3 -0
CKPT.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# yamllint disable
|
2 |
+
COER: 35.85329341317365
|
3 |
+
end-of-epoch: true
|
4 |
+
unixtime: 1701399679.8773978
|
SLU2.py
ADDED
@@ -0,0 +1,1345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Specifies the inference interfaces for Automatic speech Recognition (ASR) modules.
|
2 |
+
|
3 |
+
Authors:
|
4 |
+
* Aku Rouhe 2021
|
5 |
+
* Peter Plantinga 2021
|
6 |
+
* Loren Lugosch 2020
|
7 |
+
* Mirco Ravanelli 2020
|
8 |
+
* Titouan Parcollet 2021
|
9 |
+
* Abdel Heba 2021
|
10 |
+
* Andreas Nautsch 2022, 2023
|
11 |
+
* Pooneh Mousavi 2023
|
12 |
+
* Sylvain de Langen 2023, 2024
|
13 |
+
* Adel Moumen 2023, 2024
|
14 |
+
* Pradnya Kandarkar 2023
|
15 |
+
"""
|
16 |
+
|
17 |
+
import functools
|
18 |
+
import itertools
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Any, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece
|
23 |
+
import torch
|
24 |
+
import torchaudio
|
25 |
+
from tqdm import tqdm
|
26 |
+
|
27 |
+
import speechbrain
|
28 |
+
from speechbrain.inference.interfaces import Pretrained
|
29 |
+
from speechbrain.utils.data_utils import split_path
|
30 |
+
from speechbrain.utils.dynamic_chunk_training import DynChunkTrainConfig
|
31 |
+
from speechbrain.utils.fetching import fetch
|
32 |
+
from speechbrain.utils.streaming import split_fixed_chunks
|
33 |
+
|
34 |
+
|
35 |
+
class EncoderDecoderASR(Pretrained):
|
36 |
+
"""A ready-to-use Encoder-Decoder ASR model
|
37 |
+
|
38 |
+
The class can be used either to run only the encoder (encode()) to extract
|
39 |
+
features or to run the entire encoder-decoder model
|
40 |
+
(transcribe()) to transcribe speech. The given YAML must contain the fields
|
41 |
+
specified in the *_NEEDED[] lists.
|
42 |
+
|
43 |
+
Arguments
|
44 |
+
---------
|
45 |
+
*args : tuple
|
46 |
+
**kwargs : dict
|
47 |
+
Arguments are forwarded to ``Pretrained`` parent class.
|
48 |
+
|
49 |
+
Example
|
50 |
+
-------
|
51 |
+
>>> from speechbrain.inference.ASR import EncoderDecoderASR
|
52 |
+
>>> tmpdir = getfixture("tmpdir")
|
53 |
+
>>> asr_model = EncoderDecoderASR.from_hparams(
|
54 |
+
... source="speechbrain/asr-crdnn-rnnlm-librispeech",
|
55 |
+
... savedir=tmpdir,
|
56 |
+
... ) # doctest: +SKIP
|
57 |
+
>>> asr_model.transcribe_file("tests/samples/single-mic/example2.flac") # doctest: +SKIP
|
58 |
+
"MY FATHER HAS REVEALED THE CULPRIT'S NAME"
|
59 |
+
"""
|
60 |
+
|
61 |
+
HPARAMS_NEEDED = ["tokenizer"]
|
62 |
+
MODULES_NEEDED = ["encoder", "decoder"]
|
63 |
+
|
64 |
+
def __init__(self, *args, **kwargs):
|
65 |
+
super().__init__(*args, **kwargs)
|
66 |
+
self.tokenizer = self.hparams.tokenizer
|
67 |
+
self.transducer_beam_search = False
|
68 |
+
self.transformer_beam_search = False
|
69 |
+
if hasattr(self.hparams, "transducer_beam_search"):
|
70 |
+
self.transducer_beam_search = self.hparams.transducer_beam_search
|
71 |
+
if hasattr(self.hparams, "transformer_beam_search"):
|
72 |
+
self.transformer_beam_search = self.hparams.transformer_beam_search
|
73 |
+
|
74 |
+
def transcribe_file(self, path, **kwargs):
|
75 |
+
"""Transcribes the given audiofile into a sequence of words.
|
76 |
+
|
77 |
+
Arguments
|
78 |
+
---------
|
79 |
+
path : str
|
80 |
+
Path to audio file which to transcribe.
|
81 |
+
**kwargs : dict
|
82 |
+
Arguments forwarded to ``load_audio``.
|
83 |
+
|
84 |
+
Returns
|
85 |
+
-------
|
86 |
+
str
|
87 |
+
The audiofile transcription produced by this ASR system.
|
88 |
+
"""
|
89 |
+
waveform = self.load_audio(path, **kwargs)
|
90 |
+
# Fake a batch:
|
91 |
+
batch = waveform.unsqueeze(0)
|
92 |
+
rel_length = torch.tensor([1.0])
|
93 |
+
predicted_words, predicted_tokens = self.transcribe_batch(
|
94 |
+
batch, rel_length
|
95 |
+
)
|
96 |
+
return predicted_words[0]
|
97 |
+
|
98 |
+
def encode_batch(self, wavs, wav_lens):
|
99 |
+
"""Encodes the input audio into a sequence of hidden states
|
100 |
+
|
101 |
+
The waveforms should already be in the model's desired format.
|
102 |
+
You can call:
|
103 |
+
``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
|
104 |
+
to get a correctly converted signal in most cases.
|
105 |
+
|
106 |
+
Arguments
|
107 |
+
---------
|
108 |
+
wavs : torch.Tensor
|
109 |
+
Batch of waveforms [batch, time, channels] or [batch, time]
|
110 |
+
depending on the model.
|
111 |
+
wav_lens : torch.Tensor
|
112 |
+
Lengths of the waveforms relative to the longest one in the
|
113 |
+
batch, tensor of shape [batch]. The longest one should have
|
114 |
+
relative length 1.0 and others len(waveform) / max_length.
|
115 |
+
Used for ignoring padding.
|
116 |
+
|
117 |
+
Returns
|
118 |
+
-------
|
119 |
+
torch.Tensor
|
120 |
+
The encoded batch
|
121 |
+
"""
|
122 |
+
wavs = wavs.float()
|
123 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
124 |
+
encoder_out = self.mods.encoder(wavs, wav_lens)
|
125 |
+
if self.transformer_beam_search:
|
126 |
+
encoder_out = self.mods.transformer.encode(encoder_out, wav_lens)
|
127 |
+
return encoder_out
|
128 |
+
|
129 |
+
def transcribe_batch(self, wavs, wav_lens):
|
130 |
+
"""Transcribes the input audio into a sequence of words
|
131 |
+
|
132 |
+
The waveforms should already be in the model's desired format.
|
133 |
+
You can call:
|
134 |
+
``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
|
135 |
+
to get a correctly converted signal in most cases.
|
136 |
+
|
137 |
+
Arguments
|
138 |
+
---------
|
139 |
+
wavs : torch.Tensor
|
140 |
+
Batch of waveforms [batch, time, channels] or [batch, time]
|
141 |
+
depending on the model.
|
142 |
+
wav_lens : torch.Tensor
|
143 |
+
Lengths of the waveforms relative to the longest one in the
|
144 |
+
batch, tensor of shape [batch]. The longest one should have
|
145 |
+
relative length 1.0 and others len(waveform) / max_length.
|
146 |
+
Used for ignoring padding.
|
147 |
+
|
148 |
+
Returns
|
149 |
+
-------
|
150 |
+
list
|
151 |
+
Each waveform in the batch transcribed.
|
152 |
+
tensor
|
153 |
+
Each predicted token id.
|
154 |
+
"""
|
155 |
+
with torch.no_grad():
|
156 |
+
wav_lens = wav_lens.to(self.device)
|
157 |
+
encoder_out = self.encode_batch(wavs, wav_lens)
|
158 |
+
if self.transducer_beam_search:
|
159 |
+
inputs = [encoder_out]
|
160 |
+
else:
|
161 |
+
inputs = [encoder_out, wav_lens]
|
162 |
+
predicted_tokens, _, _, _ = self.mods.decoder(*inputs)
|
163 |
+
predicted_words = [
|
164 |
+
self.tokenizer.decode_ids(token_seq)
|
165 |
+
for token_seq in predicted_tokens
|
166 |
+
]
|
167 |
+
return predicted_words, predicted_tokens
|
168 |
+
|
169 |
+
def forward(self, wavs, wav_lens):
|
170 |
+
"""Runs full transcription - note: no gradients through decoding"""
|
171 |
+
return self.transcribe_batch(wavs, wav_lens)
|
172 |
+
|
173 |
+
|
174 |
+
class EncoderASR(Pretrained):
|
175 |
+
"""A ready-to-use Encoder ASR model
|
176 |
+
|
177 |
+
The class can be used either to run only the encoder (encode()) to extract
|
178 |
+
features or to run the entire encoder + decoder function model
|
179 |
+
(transcribe()) to transcribe speech. The given YAML must contain the fields
|
180 |
+
specified in the *_NEEDED[] lists.
|
181 |
+
|
182 |
+
Arguments
|
183 |
+
---------
|
184 |
+
*args : tuple
|
185 |
+
**kwargs : dict
|
186 |
+
Arguments are forwarded to ``Pretrained`` parent class.
|
187 |
+
|
188 |
+
Example
|
189 |
+
-------
|
190 |
+
>>> from speechbrain.inference.ASR import EncoderASR
|
191 |
+
>>> tmpdir = getfixture("tmpdir")
|
192 |
+
>>> asr_model = EncoderASR.from_hparams(
|
193 |
+
... source="speechbrain/asr-wav2vec2-commonvoice-fr",
|
194 |
+
... savedir=tmpdir,
|
195 |
+
... ) # doctest: +SKIP
|
196 |
+
>>> asr_model.transcribe_file("samples/audio_samples/example_fr.wav") # doctest: +SKIP
|
197 |
+
"""
|
198 |
+
|
199 |
+
HPARAMS_NEEDED = ["tokenizer", "decoding_function"]
|
200 |
+
MODULES_NEEDED = ["encoder"]
|
201 |
+
|
202 |
+
def __init__(self, *args, **kwargs):
|
203 |
+
super().__init__(*args, **kwargs)
|
204 |
+
|
205 |
+
self.tokenizer = self.hparams.tokenizer
|
206 |
+
self.set_decoding_function()
|
207 |
+
|
208 |
+
def set_decoding_function(self):
|
209 |
+
"""Set the decoding function based on the parameters defined in the hyperparameter file.
|
210 |
+
|
211 |
+
The decoding function is determined by the `decoding_function` specified in the hyperparameter file.
|
212 |
+
It can be either a functools.partial object representing a decoding function or an instance of
|
213 |
+
`speechbrain.decoders.ctc.CTCBaseSearcher` for beam search decoding.
|
214 |
+
|
215 |
+
Raises:
|
216 |
+
ValueError: If the decoding function is neither a functools.partial nor an instance of
|
217 |
+
speechbrain.decoders.ctc.CTCBaseSearcher.
|
218 |
+
|
219 |
+
Note:
|
220 |
+
- For greedy decoding (functools.partial), the provided `decoding_function` is assigned directly.
|
221 |
+
- For CTCBeamSearcher decoding, an instance of the specified `decoding_function` is created, and
|
222 |
+
additional parameters are added based on the tokenizer type.
|
223 |
+
"""
|
224 |
+
# Greedy Decoding case
|
225 |
+
if isinstance(self.hparams.decoding_function, functools.partial):
|
226 |
+
self.decoding_function = self.hparams.decoding_function
|
227 |
+
# CTCBeamSearcher case
|
228 |
+
else:
|
229 |
+
# 1. check if the decoding function is an instance of speechbrain.decoders.CTCBaseSearcher
|
230 |
+
if issubclass(
|
231 |
+
self.hparams.decoding_function,
|
232 |
+
speechbrain.decoders.ctc.CTCBaseSearcher,
|
233 |
+
):
|
234 |
+
# If so, we need to retrieve the vocab list from the tokenizer.
|
235 |
+
# We also need to check if the tokenizer is a sentencepiece or a CTCTextEncoder.
|
236 |
+
if isinstance(
|
237 |
+
self.tokenizer, speechbrain.dataio.encoder.CTCTextEncoder
|
238 |
+
):
|
239 |
+
ind2lab = self.tokenizer.ind2lab
|
240 |
+
vocab_list = [ind2lab[x] for x in range(len(ind2lab))]
|
241 |
+
elif isinstance(
|
242 |
+
self.tokenizer, sentencepiece.SentencePieceProcessor
|
243 |
+
):
|
244 |
+
vocab_list = [
|
245 |
+
self.tokenizer.id_to_piece(i)
|
246 |
+
for i in range(self.tokenizer.vocab_size())
|
247 |
+
]
|
248 |
+
else:
|
249 |
+
raise ValueError(
|
250 |
+
"The tokenizer must be sentencepiece or CTCTextEncoder"
|
251 |
+
)
|
252 |
+
|
253 |
+
# We can now instantiate the decoding class and add all the parameters
|
254 |
+
if hasattr(self.hparams, "test_beam_search"):
|
255 |
+
opt_beam_search_params = self.hparams.test_beam_search
|
256 |
+
# check if the kenlm_model_path is provided and fetch it if necessary
|
257 |
+
if "kenlm_model_path" in opt_beam_search_params:
|
258 |
+
source, fl = split_path(
|
259 |
+
opt_beam_search_params["kenlm_model_path"]
|
260 |
+
)
|
261 |
+
kenlm_model_path = str(
|
262 |
+
fetch(
|
263 |
+
fl, source=source, savedir=self.hparams.savedir
|
264 |
+
)
|
265 |
+
)
|
266 |
+
# we need to update the kenlm_model_path in the opt_beam_search_params
|
267 |
+
opt_beam_search_params["kenlm_model_path"] = (
|
268 |
+
kenlm_model_path
|
269 |
+
)
|
270 |
+
else:
|
271 |
+
opt_beam_search_params = {}
|
272 |
+
self.decoding_function = self.hparams.decoding_function(
|
273 |
+
**opt_beam_search_params, vocab_list=vocab_list
|
274 |
+
)
|
275 |
+
else:
|
276 |
+
raise ValueError(
|
277 |
+
"The decoding function must be an instance of speechbrain.decoders.CTCBaseSearcher"
|
278 |
+
)
|
279 |
+
|
280 |
+
def transcribe_file(self, path, **kwargs):
|
281 |
+
"""Transcribes the given audiofile into a sequence of words.
|
282 |
+
|
283 |
+
Arguments
|
284 |
+
---------
|
285 |
+
path : str
|
286 |
+
Path to audio file which to transcribe.
|
287 |
+
**kwargs : dict
|
288 |
+
Arguments forwarded to ``load_audio``.
|
289 |
+
|
290 |
+
Returns
|
291 |
+
-------
|
292 |
+
str
|
293 |
+
The audiofile transcription produced by this ASR system.
|
294 |
+
"""
|
295 |
+
waveform = self.load_audio(path, **kwargs)
|
296 |
+
# Fake a batch:
|
297 |
+
batch = waveform.unsqueeze(0)
|
298 |
+
rel_length = torch.tensor([1.0])
|
299 |
+
predicted_words, predicted_tokens = self.transcribe_batch(
|
300 |
+
batch, rel_length
|
301 |
+
)
|
302 |
+
return str(predicted_words[0])
|
303 |
+
|
304 |
+
def encode_batch(self, wavs, wav_lens):
|
305 |
+
"""Encodes the input audio into a sequence of hidden states
|
306 |
+
|
307 |
+
The waveforms should already be in the model's desired format.
|
308 |
+
You can call:
|
309 |
+
``normalized = EncoderASR.normalizer(signal, sample_rate)``
|
310 |
+
to get a correctly converted signal in most cases.
|
311 |
+
|
312 |
+
Arguments
|
313 |
+
---------
|
314 |
+
wavs : torch.Tensor
|
315 |
+
Batch of waveforms [batch, time, channels] or [batch, time]
|
316 |
+
depending on the model.
|
317 |
+
wav_lens : torch.Tensor
|
318 |
+
Lengths of the waveforms relative to the longest one in the
|
319 |
+
batch, tensor of shape [batch]. The longest one should have
|
320 |
+
relative length 1.0 and others len(waveform) / max_length.
|
321 |
+
Used for ignoring padding.
|
322 |
+
|
323 |
+
Returns
|
324 |
+
-------
|
325 |
+
torch.Tensor
|
326 |
+
The encoded batch
|
327 |
+
"""
|
328 |
+
wavs = wavs.float()
|
329 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
330 |
+
encoder_out = self.mods.wav2vec(wavs, wav_lens)
|
331 |
+
x = self.mods.dec(encoder_out)
|
332 |
+
logits = self.mods.output_lin(x)
|
333 |
+
p_ctc = self.hparams.softmax(logits)
|
334 |
+
return p_ctc
|
335 |
+
|
336 |
+
def transcribe_batch(self, wavs, wav_lens):
|
337 |
+
"""Transcribes the input audio into a sequence of words
|
338 |
+
|
339 |
+
The waveforms should already be in the model's desired format.
|
340 |
+
You can call:
|
341 |
+
``normalized = EncoderASR.normalizer(signal, sample_rate)``
|
342 |
+
to get a correctly converted signal in most cases.
|
343 |
+
|
344 |
+
Arguments
|
345 |
+
---------
|
346 |
+
wavs : torch.Tensor
|
347 |
+
Batch of waveforms [batch, time, channels] or [batch, time]
|
348 |
+
depending on the model.
|
349 |
+
wav_lens : torch.Tensor
|
350 |
+
Lengths of the waveforms relative to the longest one in the
|
351 |
+
batch, tensor of shape [batch]. The longest one should have
|
352 |
+
relative length 1.0 and others len(waveform) / max_length.
|
353 |
+
Used for ignoring padding.
|
354 |
+
|
355 |
+
Returns
|
356 |
+
-------
|
357 |
+
list
|
358 |
+
Each waveform in the batch transcribed.
|
359 |
+
tensor
|
360 |
+
Each predicted token id.
|
361 |
+
"""
|
362 |
+
with torch.no_grad():
|
363 |
+
wav_lens = wav_lens.to(self.device)
|
364 |
+
encoder_out = self.encode_batch(wavs, wav_lens)
|
365 |
+
predictions = self.decoding_function(encoder_out, wav_lens)
|
366 |
+
print(predictions)
|
367 |
+
is_ctc_text_encoder_tokenizer = isinstance(
|
368 |
+
self.tokenizer, speechbrain.dataio.encoder.CTCTextEncoder
|
369 |
+
)
|
370 |
+
self.tokenizer.load('sample_data/SLU/labelencoder.txt')
|
371 |
+
if isinstance(self.hparams.decoding_function, functools.partial):
|
372 |
+
if is_ctc_text_encoder_tokenizer:
|
373 |
+
predicted_words = [
|
374 |
+
"".join(self.tokenizer.decode_ndim(token_seq))
|
375 |
+
for token_seq in predictions
|
376 |
+
]
|
377 |
+
else:
|
378 |
+
predicted_words = [
|
379 |
+
self.tokenizer.decode_ids(token_seq)
|
380 |
+
for token_seq in predictions
|
381 |
+
]
|
382 |
+
else:
|
383 |
+
predicted_words = [hyp[0].text for hyp in predictions]
|
384 |
+
|
385 |
+
return predicted_words, predictions
|
386 |
+
|
387 |
+
def forward(self, wavs, wav_lens):
|
388 |
+
"""Runs the encoder"""
|
389 |
+
return self.encode_batch(wavs, wav_lens)
|
390 |
+
|
391 |
+
|
392 |
+
@dataclass
|
393 |
+
class ASRWhisperSegment:
|
394 |
+
"""A single chunk of audio for Whisper ASR streaming.
|
395 |
+
|
396 |
+
This object is intended to be mutated as streaming progresses and passed across calls
|
397 |
+
to the lower-level APIs such as `encode_chunk`, `decode_chunk`, etc.
|
398 |
+
|
399 |
+
Attributes
|
400 |
+
----------
|
401 |
+
start : float
|
402 |
+
The start time of the audio chunk.
|
403 |
+
end : float
|
404 |
+
The end time of the audio chunk.
|
405 |
+
chunk : torch.Tensor
|
406 |
+
The audio chunk, shape [time, channels].
|
407 |
+
lang_id : str
|
408 |
+
The language identifier associated with the audio chunk.
|
409 |
+
words : str
|
410 |
+
The predicted words for the audio chunk.
|
411 |
+
tokens : List[int]
|
412 |
+
The predicted tokens for the audio chunk.
|
413 |
+
prompt : List[str]
|
414 |
+
The prompt associated with the audio chunk.
|
415 |
+
avg_log_probs : float
|
416 |
+
The average log probability associated with the prediction.
|
417 |
+
no_speech_prob : float
|
418 |
+
The probability of no speech in the audio chunk.
|
419 |
+
"""
|
420 |
+
|
421 |
+
start: float
|
422 |
+
end: float
|
423 |
+
chunk: torch.Tensor
|
424 |
+
lang_id: Optional[str] = None
|
425 |
+
words: Optional[str] = None
|
426 |
+
tokens: Optional[List[str]] = None
|
427 |
+
prompt: Optional[List[str]] = None
|
428 |
+
avg_log_probs: Optional[float] = None
|
429 |
+
no_speech_prob: Optional[float] = None
|
430 |
+
|
431 |
+
|
432 |
+
class WhisperASR(Pretrained):
|
433 |
+
"""A ready-to-use Whisper ASR model.
|
434 |
+
|
435 |
+
The class can be used to run the entire encoder-decoder whisper model.
|
436 |
+
The set of tasks supported are: ``transcribe``, ``translate``, and ``lang_id``.
|
437 |
+
The given YAML must contains the fields specified in the *_NEEDED[] lists.
|
438 |
+
|
439 |
+
Arguments
|
440 |
+
---------
|
441 |
+
*args : tuple
|
442 |
+
**kwargs : dict
|
443 |
+
Arguments are forwarded to ``Pretrained`` parent class.
|
444 |
+
|
445 |
+
Example
|
446 |
+
-------
|
447 |
+
>>> from speechbrain.inference.ASR import WhisperASR
|
448 |
+
>>> tmpdir = getfixture("tmpdir")
|
449 |
+
>>> asr_model = WhisperASR.from_hparams(source="speechbrain/asr-whisper-medium-commonvoice-it", savedir=tmpdir,) # doctest: +SKIP
|
450 |
+
>>> hyp = asr_model.transcribe_file("speechbrain/asr-whisper-medium-commonvoice-it/example-it.wav") # doctest: +SKIP
|
451 |
+
>>> hyp # doctest: +SKIP
|
452 |
+
buongiorno a tutti e benvenuti a bordo
|
453 |
+
>>> _, probs = asr_model.detect_language_file("speechbrain/asr-whisper-medium-commonvoice-it/example-it.wav") # doctest: +SKIP
|
454 |
+
>>> print(f"Detected language: {max(probs[0], key=probs[0].get)}") # doctest: +SKIP
|
455 |
+
Detected language: it
|
456 |
+
"""
|
457 |
+
|
458 |
+
HPARAMS_NEEDED = ["language", "sample_rate"]
|
459 |
+
MODULES_NEEDED = ["whisper", "decoder"]
|
460 |
+
TASKS = ["transcribe", "translate", "lang_id"]
|
461 |
+
|
462 |
+
def __init__(self, *args, **kwargs):
|
463 |
+
super().__init__(*args, **kwargs)
|
464 |
+
self.tokenizer = self.hparams.whisper.tokenizer
|
465 |
+
|
466 |
+
@torch.no_grad()
|
467 |
+
def detect_language_file(self, path: str):
|
468 |
+
"""Detects the language of the given audiofile.
|
469 |
+
This method only works on input_file of 30 seconds or less.
|
470 |
+
|
471 |
+
Arguments
|
472 |
+
---------
|
473 |
+
path : str
|
474 |
+
Path to audio file which to transcribe.
|
475 |
+
|
476 |
+
Returns
|
477 |
+
-------
|
478 |
+
language_tokens : torch.Tensor
|
479 |
+
The detected language tokens.
|
480 |
+
language_probs : dict
|
481 |
+
The probabilities of the detected language tokens.
|
482 |
+
|
483 |
+
Raises
|
484 |
+
------
|
485 |
+
ValueError
|
486 |
+
If the model doesn't have language tokens.
|
487 |
+
"""
|
488 |
+
wavs = self.load_audio(path).float().to(self.device).unsqueeze(0)
|
489 |
+
mel = self.mods.whisper._get_mel(wavs)
|
490 |
+
language_tokens, language_probs = self.mods.whisper.detect_language(mel)
|
491 |
+
return language_tokens, language_probs
|
492 |
+
|
493 |
+
@torch.no_grad()
|
494 |
+
def detect_language_batch(self, wav: torch.Tensor):
|
495 |
+
"""Detects the language of the given wav Tensor.
|
496 |
+
This method only works on wav files of 30 seconds or less.
|
497 |
+
|
498 |
+
Arguments
|
499 |
+
---------
|
500 |
+
wav : torch.tensor
|
501 |
+
Batch of waveforms [batch, time, channels].
|
502 |
+
|
503 |
+
Returns
|
504 |
+
-------
|
505 |
+
language_tokens : torch.Tensor of shape (batch_size,)
|
506 |
+
ids of the most probable language tokens, which appears after the startoftranscript token.
|
507 |
+
language_probs : List[Dict[str, float]]
|
508 |
+
list of dictionaries containing the probability distribution over all languages.
|
509 |
+
|
510 |
+
Raises
|
511 |
+
------
|
512 |
+
ValueError
|
513 |
+
If the model doesn't have language tokens.
|
514 |
+
|
515 |
+
Example
|
516 |
+
-------
|
517 |
+
>>> from speechbrain.inference.ASR import WhisperASR
|
518 |
+
>>> import torchaudio
|
519 |
+
>>> tmpdir = getfixture("tmpdir")
|
520 |
+
>>> asr_model = WhisperASR.from_hparams(
|
521 |
+
... source="speechbrain/asr-whisper-medium-commonvoice-it",
|
522 |
+
... savedir=tmpdir,
|
523 |
+
... ) # doctest: +SKIP
|
524 |
+
>>> wav, _ = torchaudio.load("your_audio") # doctest: +SKIP
|
525 |
+
>>> language_tokens, language_probs = asr_model.detect_language(wav) # doctest: +SKIP
|
526 |
+
"""
|
527 |
+
mel = self.mods.whisper._get_mel(wav)
|
528 |
+
language_tokens, language_probs = self.mods.whisper.detect_language(mel)
|
529 |
+
return language_tokens, language_probs
|
530 |
+
|
531 |
+
@torch.no_grad()
|
532 |
+
def _detect_language(self, mel: torch.Tensor, task: str):
|
533 |
+
"""Detects the language of the given mel spectrogram.
|
534 |
+
|
535 |
+
Arguments
|
536 |
+
---------
|
537 |
+
mel : torch.tensor
|
538 |
+
Batch of mel spectrograms [batch, time, channels].
|
539 |
+
task : str
|
540 |
+
The task to perform.
|
541 |
+
|
542 |
+
Returns
|
543 |
+
-------
|
544 |
+
language_tokens : Tensor, shape = (n_audio,)
|
545 |
+
ids of the most probable language tokens, which appears after the startoftranscript token.
|
546 |
+
language_probs : List[Dict[str, float]], length = n_audio
|
547 |
+
list of dictionaries containing the probability distribution over all languages.
|
548 |
+
"""
|
549 |
+
languages = [self.mods.whisper.language] * mel.shape[0]
|
550 |
+
lang_probs = None
|
551 |
+
|
552 |
+
if self.mods.whisper.language is None or task == "lang_id":
|
553 |
+
lang_tokens, lang_probs = self.mods.whisper.detect_language(mel)
|
554 |
+
languages = [max(probs, key=probs.get) for probs in lang_probs]
|
555 |
+
self.mods.decoder.set_lang_tokens(lang_tokens)
|
556 |
+
return languages, lang_probs
|
557 |
+
|
558 |
+
def _get_audio_stream(
|
559 |
+
self, streamer: "torchaudio.io.StreamReader", frames_per_chunk: int
|
560 |
+
):
|
561 |
+
"""From a :class:`torchaudio.io.StreamReader`, identifies the audio
|
562 |
+
stream and returns an iterable stream of chunks (after resampling and
|
563 |
+
downmixing to mono).
|
564 |
+
|
565 |
+
Arguments
|
566 |
+
---------
|
567 |
+
streamer : torchaudio.io.StreamReader
|
568 |
+
The stream object. Must hold exactly one source stream of an
|
569 |
+
audio type.
|
570 |
+
frames_per_chunk : int
|
571 |
+
The number of frames per chunk. For a streaming model, this should
|
572 |
+
be determined from the DynChunkTrain configuration.
|
573 |
+
|
574 |
+
Yields
|
575 |
+
------
|
576 |
+
chunks from streamer
|
577 |
+
"""
|
578 |
+
|
579 |
+
stream_infos = [
|
580 |
+
streamer.get_src_stream_info(i)
|
581 |
+
for i in range(streamer.num_src_streams)
|
582 |
+
]
|
583 |
+
|
584 |
+
audio_stream_infos = [
|
585 |
+
(i, stream_info)
|
586 |
+
for i, stream_info in enumerate(stream_infos)
|
587 |
+
if stream_info.media_type == "audio"
|
588 |
+
]
|
589 |
+
|
590 |
+
if len(audio_stream_infos) != 1:
|
591 |
+
raise ValueError(
|
592 |
+
f"Expected stream to have only 1 stream (with any number of channels), got {len(audio_stream_infos)} (with streams: {stream_infos})"
|
593 |
+
)
|
594 |
+
|
595 |
+
# find the index of the first (and only) audio stream
|
596 |
+
audio_stream_index = audio_stream_infos[0][0]
|
597 |
+
|
598 |
+
# output stream #0
|
599 |
+
streamer.add_basic_audio_stream(
|
600 |
+
frames_per_chunk=frames_per_chunk,
|
601 |
+
stream_index=audio_stream_index,
|
602 |
+
sample_rate=self.audio_normalizer.sample_rate,
|
603 |
+
format="fltp", # torch.float32
|
604 |
+
num_channels=1,
|
605 |
+
)
|
606 |
+
|
607 |
+
for (chunk,) in streamer.stream():
|
608 |
+
chunk = chunk.squeeze(-1) # we deal with mono, remove that dim
|
609 |
+
chunk = chunk.unsqueeze(0) # create a fake batch dim
|
610 |
+
yield chunk
|
611 |
+
|
612 |
+
@torch.no_grad()
|
613 |
+
def transcribe_file_streaming(
|
614 |
+
self,
|
615 |
+
path: str,
|
616 |
+
task: Optional[str] = None,
|
617 |
+
initial_prompt: Optional[str] = None,
|
618 |
+
logprob_threshold: Optional[float] = -1.0,
|
619 |
+
no_speech_threshold=0.6,
|
620 |
+
condition_on_previous_text: bool = False,
|
621 |
+
verbose: bool = False,
|
622 |
+
use_torchaudio_streaming: bool = False,
|
623 |
+
chunk_size: Optional[int] = 30,
|
624 |
+
**kwargs,
|
625 |
+
):
|
626 |
+
"""Transcribes the given audiofile into a sequence of words.
|
627 |
+
This method supports the following tasks: ``transcribe``, ``translate``, and ``lang_id``.
|
628 |
+
It can process an input audio file longer than 30 seconds by splitting it into chunk_size-second segments.
|
629 |
+
|
630 |
+
Arguments
|
631 |
+
---------
|
632 |
+
path : str
|
633 |
+
URI/path to the audio to transcribe. When
|
634 |
+
``use_torchaudio_streaming`` is ``False``, uses SB fetching to allow
|
635 |
+
fetching from HF or a local file. When ``True``, resolves the URI
|
636 |
+
through ffmpeg, as documented in
|
637 |
+
:class:`torchaudio.io.StreamReader`.
|
638 |
+
task : Optional[str]
|
639 |
+
The task to perform. If None, the default task is the one passed in the Whisper model.
|
640 |
+
initial_prompt : Optional[str]
|
641 |
+
The initial prompt to condition the model on.
|
642 |
+
logprob_threshold : Optional[float]
|
643 |
+
The log probability threshold to continue decoding the current segment.
|
644 |
+
no_speech_threshold : float
|
645 |
+
The threshold to skip decoding segment if the no_speech_prob is higher than this value.
|
646 |
+
condition_on_previous_text : bool
|
647 |
+
If True, the model will be condition on the last 224 tokens.
|
648 |
+
verbose : bool
|
649 |
+
If True, print the transcription of each segment.
|
650 |
+
use_torchaudio_streaming : bool
|
651 |
+
Whether the audio file can be loaded in a streaming fashion. If not,
|
652 |
+
transcription is still performed through chunks of audio, but the
|
653 |
+
entire audio file is fetched and loaded at once.
|
654 |
+
This skips the usual fetching method and instead resolves the URI
|
655 |
+
using torchaudio (via ffmpeg).
|
656 |
+
chunk_size : Optional[int]
|
657 |
+
The size of the chunks to split the audio into. The default
|
658 |
+
chunk size is 30 seconds which corresponds to the maximal length
|
659 |
+
that the model can process in one go.
|
660 |
+
**kwargs : dict
|
661 |
+
Arguments forwarded to ``load_audio``
|
662 |
+
|
663 |
+
Yields
|
664 |
+
------
|
665 |
+
ASRWhisperSegment
|
666 |
+
A new ASRWhisperSegment instance initialized with the provided parameters.
|
667 |
+
"""
|
668 |
+
if task is not None:
|
669 |
+
if task in self.TASKS:
|
670 |
+
if task != "lang_id":
|
671 |
+
self.mods.decoder.set_task(task)
|
672 |
+
else:
|
673 |
+
raise ValueError(
|
674 |
+
f"Task {task} not supported. Supported tasks are {self.TASKS}"
|
675 |
+
)
|
676 |
+
|
677 |
+
# create chunks of chunk_size seconds
|
678 |
+
num_frames_per_chunk = chunk_size * self.hparams.sample_rate
|
679 |
+
if use_torchaudio_streaming:
|
680 |
+
streamer = torchaudio.io.StreamReader(path)
|
681 |
+
segments = self._get_audio_stream(streamer, num_frames_per_chunk)
|
682 |
+
else:
|
683 |
+
waveform = self.load_audio(path, **kwargs)
|
684 |
+
batch = waveform.unsqueeze(0)
|
685 |
+
segments = split_fixed_chunks(batch, num_frames_per_chunk)
|
686 |
+
|
687 |
+
rel_length = torch.tensor([1.0])
|
688 |
+
|
689 |
+
all_tokens = []
|
690 |
+
prompt_reset_since = 0
|
691 |
+
if initial_prompt is not None:
|
692 |
+
initial_prompt_tokens = self.whisper.tokenizer.encode(
|
693 |
+
" " + initial_prompt.strip()
|
694 |
+
)
|
695 |
+
all_tokens.extend(initial_prompt_tokens)
|
696 |
+
else:
|
697 |
+
initial_prompt_tokens = []
|
698 |
+
|
699 |
+
for i, segment in enumerate(tqdm(segments, disable=verbose)):
|
700 |
+
# move the segment on the device
|
701 |
+
segment = segment.to(self.device)
|
702 |
+
|
703 |
+
# extract mel spectrogram
|
704 |
+
mel_segment = self.mods.whisper._get_mel(segment)
|
705 |
+
|
706 |
+
start = i * chunk_size
|
707 |
+
end = (i + 1) * chunk_size
|
708 |
+
|
709 |
+
encoder_out = self.mods.whisper.forward_encoder(mel_segment)
|
710 |
+
languages, _ = self._detect_language(mel_segment, task)
|
711 |
+
|
712 |
+
if task == "lang_id":
|
713 |
+
yield ASRWhisperSegment(
|
714 |
+
start=start,
|
715 |
+
end=end,
|
716 |
+
chunk=segment,
|
717 |
+
lang_id=languages[0],
|
718 |
+
)
|
719 |
+
continue
|
720 |
+
|
721 |
+
prompt = all_tokens[prompt_reset_since:]
|
722 |
+
self.mods.decoder.set_prompt(prompt)
|
723 |
+
|
724 |
+
predicted_tokens, _, scores, _ = self.mods.decoder(
|
725 |
+
encoder_out, rel_length
|
726 |
+
)
|
727 |
+
avg_log_probs = scores.sum() / (len(predicted_tokens[0]) + 1)
|
728 |
+
|
729 |
+
if no_speech_threshold is not None:
|
730 |
+
should_skip = (
|
731 |
+
self.mods.decoder.no_speech_probs[0] > no_speech_threshold
|
732 |
+
)
|
733 |
+
if (
|
734 |
+
logprob_threshold is not None
|
735 |
+
and avg_log_probs > logprob_threshold
|
736 |
+
):
|
737 |
+
# don't skip if the logprob is high enough, despite the no_speech_prob
|
738 |
+
should_skip = False
|
739 |
+
|
740 |
+
if should_skip:
|
741 |
+
yield ASRWhisperSegment(
|
742 |
+
start=start,
|
743 |
+
end=end,
|
744 |
+
chunk=segment,
|
745 |
+
lang_id=languages[0],
|
746 |
+
words="",
|
747 |
+
tokens=[],
|
748 |
+
prompt=prompt,
|
749 |
+
avg_log_probs=avg_log_probs.item(),
|
750 |
+
no_speech_prob=self.mods.decoder.no_speech_probs[0],
|
751 |
+
)
|
752 |
+
continue
|
753 |
+
|
754 |
+
predicted_words = [
|
755 |
+
self.tokenizer.decode(t, skip_special_tokens=True).strip()
|
756 |
+
for t in predicted_tokens
|
757 |
+
]
|
758 |
+
|
759 |
+
yield ASRWhisperSegment(
|
760 |
+
start=start,
|
761 |
+
end=end,
|
762 |
+
chunk=segment,
|
763 |
+
lang_id=languages[0],
|
764 |
+
words=predicted_words[0],
|
765 |
+
tokens=predicted_tokens[0],
|
766 |
+
prompt=prompt,
|
767 |
+
avg_log_probs=avg_log_probs.item(),
|
768 |
+
no_speech_prob=self.mods.decoder.no_speech_probs[0],
|
769 |
+
)
|
770 |
+
|
771 |
+
all_tokens.extend(predicted_tokens[0])
|
772 |
+
|
773 |
+
if (
|
774 |
+
not condition_on_previous_text
|
775 |
+
or self.mods.decoder.temperature > 0.5
|
776 |
+
):
|
777 |
+
prompt_reset_since = len(all_tokens)
|
778 |
+
|
779 |
+
def transcribe_file(
|
780 |
+
self,
|
781 |
+
path: str,
|
782 |
+
task: Optional[str] = None,
|
783 |
+
initial_prompt: Optional[str] = None,
|
784 |
+
logprob_threshold: Optional[float] = -1.0,
|
785 |
+
no_speech_threshold=0.6,
|
786 |
+
condition_on_previous_text: bool = False,
|
787 |
+
verbose: bool = False,
|
788 |
+
use_torchaudio_streaming: bool = False,
|
789 |
+
chunk_size: Optional[int] = 30,
|
790 |
+
**kwargs,
|
791 |
+
) -> List[ASRWhisperSegment]:
|
792 |
+
"""Run the Whisper model using the specified task on the given audio file and return the ``ASRWhisperSegment`` objects
|
793 |
+
for each segment.
|
794 |
+
|
795 |
+
This method supports the following tasks: ``transcribe``, ``translate``, and ``lang_id``.
|
796 |
+
It can process an input audio file longer than 30 seconds by splitting it into chunk_size-second segments.
|
797 |
+
|
798 |
+
Arguments
|
799 |
+
---------
|
800 |
+
path : str
|
801 |
+
URI/path to the audio to transcribe. When
|
802 |
+
``use_torchaudio_streaming`` is ``False``, uses SB fetching to allow
|
803 |
+
fetching from HF or a local file. When ``True``, resolves the URI
|
804 |
+
through ffmpeg, as documented in
|
805 |
+
:class:`torchaudio.io.StreamReader`.
|
806 |
+
task : Optional[str]
|
807 |
+
The task to perform. If None, the default task is the one passed in the Whisper model.
|
808 |
+
It can be one of the following: ``transcribe``, ``translate``, ``lang_id``.
|
809 |
+
initial_prompt : Optional[str]
|
810 |
+
The initial prompt to condition the model on.
|
811 |
+
logprob_threshold : Optional[float]
|
812 |
+
The log probability threshold to continue decoding the current segment.
|
813 |
+
no_speech_threshold : float
|
814 |
+
The threshold to skip decoding segment if the no_speech_prob is higher than this value.
|
815 |
+
condition_on_previous_text : bool
|
816 |
+
If True, the model will be condition on the last 224 tokens.
|
817 |
+
verbose : bool
|
818 |
+
If True, print the details of each segment.
|
819 |
+
use_torchaudio_streaming : bool
|
820 |
+
Whether the audio file can be loaded in a streaming fashion. If not,
|
821 |
+
transcription is still performed through chunks of audio, but the
|
822 |
+
entire audio file is fetched and loaded at once.
|
823 |
+
This skips the usual fetching method and instead resolves the URI
|
824 |
+
using torchaudio (via ffmpeg).
|
825 |
+
chunk_size : Optional[int]
|
826 |
+
The size of the chunks to split the audio into. The default
|
827 |
+
chunk size is 30 seconds which corresponds to the maximal length
|
828 |
+
that the model can process in one go.
|
829 |
+
**kwargs : dict
|
830 |
+
Arguments forwarded to ``load_audio``
|
831 |
+
|
832 |
+
Returns
|
833 |
+
-------
|
834 |
+
results : list
|
835 |
+
A list of ``WhisperASRChunk`` objects, each containing the task result.
|
836 |
+
"""
|
837 |
+
results = []
|
838 |
+
for whisper_segment in self.transcribe_file_streaming(
|
839 |
+
path,
|
840 |
+
task=task,
|
841 |
+
initial_prompt=initial_prompt,
|
842 |
+
logprob_threshold=logprob_threshold,
|
843 |
+
no_speech_threshold=no_speech_threshold,
|
844 |
+
condition_on_previous_text=condition_on_previous_text,
|
845 |
+
verbose=verbose,
|
846 |
+
use_torchaudio_streaming=use_torchaudio_streaming,
|
847 |
+
chunk_size=chunk_size,
|
848 |
+
**kwargs,
|
849 |
+
):
|
850 |
+
results.append(whisper_segment)
|
851 |
+
if verbose:
|
852 |
+
pred = (
|
853 |
+
whisper_segment.words
|
854 |
+
if task != "lang_id"
|
855 |
+
else whisper_segment.lang_id
|
856 |
+
)
|
857 |
+
print(
|
858 |
+
f"[{whisper_segment.start}s --> {whisper_segment.end}s] {pred}"
|
859 |
+
)
|
860 |
+
return results
|
861 |
+
|
862 |
+
def encode_batch(self, wavs, wav_lens):
|
863 |
+
"""Encodes the input audio into a sequence of hidden states
|
864 |
+
|
865 |
+
The waveforms should already be in the model's desired format.
|
866 |
+
You can call:
|
867 |
+
``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
|
868 |
+
to get a correctly converted signal in most cases.
|
869 |
+
|
870 |
+
Arguments
|
871 |
+
---------
|
872 |
+
wavs : torch.tensor
|
873 |
+
Batch of waveforms [batch, time, channels].
|
874 |
+
wav_lens : torch.tensor
|
875 |
+
Lengths of the waveforms relative to the longest one in the
|
876 |
+
batch, tensor of shape [batch]. The longest one should have
|
877 |
+
relative length 1.0 and others len(waveform) / max_length.
|
878 |
+
Used for ignoring padding.
|
879 |
+
|
880 |
+
Returns
|
881 |
+
-------
|
882 |
+
torch.tensor
|
883 |
+
The encoded batch
|
884 |
+
"""
|
885 |
+
wavs = wavs.to(device=self.device, dtype=torch.float32)
|
886 |
+
mel = self.mods.whisper._get_mel(wavs)
|
887 |
+
encoder_out = self.mods.whisper.forward_encoder(mel)
|
888 |
+
return encoder_out
|
889 |
+
|
890 |
+
@torch.no_grad()
|
891 |
+
def transcribe_batch(self, wavs, wav_lens):
|
892 |
+
"""Transcribes the input audio into a sequence of words
|
893 |
+
|
894 |
+
The waveforms should already be in the model's desired format.
|
895 |
+
You can call:
|
896 |
+
``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
|
897 |
+
to get a correctly converted signal in most cases.
|
898 |
+
|
899 |
+
Arguments
|
900 |
+
---------
|
901 |
+
wavs : torch.tensor
|
902 |
+
Batch of waveforms [batch, time, channels].
|
903 |
+
wav_lens : torch.tensor
|
904 |
+
Lengths of the waveforms relative to the longest one in the
|
905 |
+
batch, tensor of shape [batch]. The longest one should have
|
906 |
+
relative length 1.0 and others len(waveform) / max_length.
|
907 |
+
Used for ignoring padding.
|
908 |
+
|
909 |
+
Returns
|
910 |
+
-------
|
911 |
+
list
|
912 |
+
Each waveform in the batch transcribed.
|
913 |
+
tensor
|
914 |
+
Each predicted token id.
|
915 |
+
"""
|
916 |
+
wav_lens = wav_lens.float().to(self.device)
|
917 |
+
encoder_out = self.encode_batch(wavs, wav_lens)
|
918 |
+
predicted_tokens, _, _, _ = self.mods.decoder(encoder_out, wav_lens)
|
919 |
+
predicted_words = [
|
920 |
+
self.tokenizer.decode(t, skip_special_tokens=True).strip()
|
921 |
+
for t in predicted_tokens
|
922 |
+
]
|
923 |
+
if self.hparams.normalized_transcripts:
|
924 |
+
predicted_words = [
|
925 |
+
self.tokenizer.normalize(text).split(" ")
|
926 |
+
for text in predicted_words
|
927 |
+
]
|
928 |
+
|
929 |
+
return predicted_words, predicted_tokens
|
930 |
+
|
931 |
+
def forward(self, wavs, wav_lens):
|
932 |
+
"""Runs full transcription - note: no gradients through decoding"""
|
933 |
+
return self.transcribe_batch(wavs, wav_lens)
|
934 |
+
|
935 |
+
|
936 |
+
@dataclass
|
937 |
+
class ASRStreamingContext:
|
938 |
+
"""Streaming metadata, initialized by
|
939 |
+
:meth:`~StreamingASR.make_streaming_context` (see there for details on
|
940 |
+
initialization of fields here).
|
941 |
+
|
942 |
+
This object is intended to be mutate: the same object should be passed
|
943 |
+
across calls as streaming progresses (namely when using the lower-level
|
944 |
+
:meth:`~StreamingASR.encode_chunk`, etc. APIs).
|
945 |
+
|
946 |
+
Holds some references to opaque streaming contexts, so the context is
|
947 |
+
model-agnostic to an extent."""
|
948 |
+
|
949 |
+
config: DynChunkTrainConfig
|
950 |
+
"""Dynamic chunk training configuration used to initialize the streaming
|
951 |
+
context. Cannot be modified on the fly."""
|
952 |
+
|
953 |
+
fea_extractor_context: Any
|
954 |
+
"""Opaque feature extractor streaming context."""
|
955 |
+
|
956 |
+
encoder_context: Any
|
957 |
+
"""Opaque encoder streaming context."""
|
958 |
+
|
959 |
+
decoder_context: Any
|
960 |
+
"""Opaque decoder streaming context."""
|
961 |
+
|
962 |
+
tokenizer_context: Optional[List[Any]]
|
963 |
+
"""Opaque streaming context for the tokenizer. Initially `None`. Initialized
|
964 |
+
to a list of tokenizer contexts once batch size can be determined."""
|
965 |
+
|
966 |
+
|
967 |
+
class StreamingASR(Pretrained):
|
968 |
+
"""A ready-to-use, streaming-capable ASR model.
|
969 |
+
|
970 |
+
Arguments
|
971 |
+
---------
|
972 |
+
*args : tuple
|
973 |
+
**kwargs : dict
|
974 |
+
Arguments are forwarded to ``Pretrained`` parent class.
|
975 |
+
|
976 |
+
Example
|
977 |
+
-------
|
978 |
+
>>> from speechbrain.inference.ASR import StreamingASR
|
979 |
+
>>> from speechbrain.utils.dynamic_chunk_training import DynChunkTrainConfig
|
980 |
+
>>> tmpdir = getfixture("tmpdir")
|
981 |
+
>>> asr_model = StreamingASR.from_hparams(source="speechbrain/asr-conformer-streaming-librispeech", savedir=tmpdir,) # doctest: +SKIP
|
982 |
+
>>> asr_model.transcribe_file("speechbrain/asr-conformer-streaming-librispeech/test-en.wav", DynChunkTrainConfig(24, 8)) # doctest: +SKIP
|
983 |
+
"""
|
984 |
+
|
985 |
+
HPARAMS_NEEDED = [
|
986 |
+
"fea_streaming_extractor",
|
987 |
+
"make_decoder_streaming_context",
|
988 |
+
"decoding_function",
|
989 |
+
"make_tokenizer_streaming_context",
|
990 |
+
"tokenizer_decode_streaming",
|
991 |
+
]
|
992 |
+
MODULES_NEEDED = ["enc", "proj_enc"]
|
993 |
+
|
994 |
+
def __init__(self, *args, **kwargs):
|
995 |
+
super().__init__(*args, **kwargs)
|
996 |
+
|
997 |
+
self.filter_props = self.hparams.fea_streaming_extractor.properties
|
998 |
+
|
999 |
+
def _get_audio_stream(
|
1000 |
+
self, streamer: "torchaudio.io.StreamReader", frames_per_chunk: int
|
1001 |
+
):
|
1002 |
+
"""From a :class:`torchaudio.io.StreamReader`, identifies the audio
|
1003 |
+
stream and returns an iterable stream of chunks (after resampling and
|
1004 |
+
downmixing to mono).
|
1005 |
+
|
1006 |
+
Arguments
|
1007 |
+
---------
|
1008 |
+
streamer : torchaudio.io.StreamReader
|
1009 |
+
The stream object. Must hold exactly one source stream of an
|
1010 |
+
audio type.
|
1011 |
+
frames_per_chunk : int
|
1012 |
+
The number of frames per chunk. For a streaming model, this should
|
1013 |
+
be determined from the DynChunkTrain configuration.
|
1014 |
+
|
1015 |
+
Yields
|
1016 |
+
------
|
1017 |
+
chunks from streamer
|
1018 |
+
"""
|
1019 |
+
|
1020 |
+
stream_infos = [
|
1021 |
+
streamer.get_src_stream_info(i)
|
1022 |
+
for i in range(streamer.num_src_streams)
|
1023 |
+
]
|
1024 |
+
|
1025 |
+
audio_stream_infos = [
|
1026 |
+
(i, stream_info)
|
1027 |
+
for i, stream_info in enumerate(stream_infos)
|
1028 |
+
if stream_info.media_type == "audio"
|
1029 |
+
]
|
1030 |
+
|
1031 |
+
if len(audio_stream_infos) != 1:
|
1032 |
+
raise ValueError(
|
1033 |
+
f"Expected stream to have only 1 stream (with any number of channels), got {len(audio_stream_infos)} (with streams: {stream_infos})"
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
# find the index of the first (and only) audio stream
|
1037 |
+
audio_stream_index = audio_stream_infos[0][0]
|
1038 |
+
|
1039 |
+
# output stream #0
|
1040 |
+
streamer.add_basic_audio_stream(
|
1041 |
+
frames_per_chunk=frames_per_chunk,
|
1042 |
+
stream_index=audio_stream_index,
|
1043 |
+
sample_rate=self.audio_normalizer.sample_rate,
|
1044 |
+
format="fltp", # torch.float32
|
1045 |
+
num_channels=1,
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
for (chunk,) in streamer.stream():
|
1049 |
+
chunk = chunk.squeeze(-1) # we deal with mono, remove that dim
|
1050 |
+
chunk = chunk.unsqueeze(0) # create a fake batch dim
|
1051 |
+
yield chunk
|
1052 |
+
|
1053 |
+
def transcribe_file_streaming(
|
1054 |
+
self,
|
1055 |
+
path,
|
1056 |
+
dynchunktrain_config: DynChunkTrainConfig,
|
1057 |
+
use_torchaudio_streaming: bool = True,
|
1058 |
+
**kwargs,
|
1059 |
+
):
|
1060 |
+
"""Transcribes the given audio file into a sequence of words, in a
|
1061 |
+
streaming fashion, meaning that text is being yield from this
|
1062 |
+
generator, in the form of strings to concatenate.
|
1063 |
+
|
1064 |
+
Arguments
|
1065 |
+
---------
|
1066 |
+
path : str
|
1067 |
+
URI/path to the audio to transcribe. When
|
1068 |
+
``use_torchaudio_streaming`` is ``False``, uses SB fetching to allow
|
1069 |
+
fetching from HF or a local file. When ``True``, resolves the URI
|
1070 |
+
through ffmpeg, as documented in
|
1071 |
+
:class:`torchaudio.io.StreamReader`.
|
1072 |
+
dynchunktrain_config : DynChunkTrainConfig
|
1073 |
+
Streaming configuration. Sane values and how much time chunks
|
1074 |
+
actually represent is model-dependent.
|
1075 |
+
use_torchaudio_streaming : bool
|
1076 |
+
Whether the audio file can be loaded in a streaming fashion. If not,
|
1077 |
+
transcription is still performed through chunks of audio, but the
|
1078 |
+
entire audio file is fetched and loaded at once.
|
1079 |
+
This skips the usual fetching method and instead resolves the URI
|
1080 |
+
using torchaudio (via ffmpeg).
|
1081 |
+
**kwargs : dict
|
1082 |
+
Arguments forwarded to ``load_audio``
|
1083 |
+
|
1084 |
+
Yields
|
1085 |
+
------
|
1086 |
+
generator of str
|
1087 |
+
An iterator yielding transcribed chunks (strings). There is a yield
|
1088 |
+
for every chunk, even if the transcribed string for that chunk is an
|
1089 |
+
empty string.
|
1090 |
+
"""
|
1091 |
+
|
1092 |
+
chunk_size = self.get_chunk_size_frames(dynchunktrain_config)
|
1093 |
+
|
1094 |
+
if use_torchaudio_streaming:
|
1095 |
+
streamer = torchaudio.io.StreamReader(path)
|
1096 |
+
chunks = self._get_audio_stream(streamer, chunk_size)
|
1097 |
+
else:
|
1098 |
+
waveform = self.load_audio(path, **kwargs)
|
1099 |
+
batch = waveform.unsqueeze(0) # create batch dim
|
1100 |
+
chunks = split_fixed_chunks(batch, chunk_size)
|
1101 |
+
|
1102 |
+
rel_length = torch.tensor([1.0])
|
1103 |
+
context = self.make_streaming_context(dynchunktrain_config)
|
1104 |
+
|
1105 |
+
final_chunks = [
|
1106 |
+
torch.zeros((1, chunk_size), device=self.device)
|
1107 |
+
] * self.hparams.fea_streaming_extractor.get_recommended_final_chunk_count(
|
1108 |
+
chunk_size
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
for chunk in itertools.chain(chunks, final_chunks):
|
1112 |
+
predicted_words = self.transcribe_chunk(context, chunk, rel_length)
|
1113 |
+
yield predicted_words[0]
|
1114 |
+
|
1115 |
+
def transcribe_file(
|
1116 |
+
self,
|
1117 |
+
path,
|
1118 |
+
dynchunktrain_config: DynChunkTrainConfig,
|
1119 |
+
use_torchaudio_streaming: bool = True,
|
1120 |
+
):
|
1121 |
+
"""Transcribes the given audio file into a sequence of words.
|
1122 |
+
|
1123 |
+
Arguments
|
1124 |
+
---------
|
1125 |
+
path : str
|
1126 |
+
URI/path to the audio to transcribe. When
|
1127 |
+
``use_torchaudio_streaming`` is ``False``, uses SB fetching to allow
|
1128 |
+
fetching from HF or a local file. When ``True``, resolves the URI
|
1129 |
+
through ffmpeg, as documented in
|
1130 |
+
:class:`torchaudio.io.StreamReader`.
|
1131 |
+
dynchunktrain_config : DynChunkTrainConfig
|
1132 |
+
Streaming configuration. Sane values and how much time chunks
|
1133 |
+
actually represent is model-dependent.
|
1134 |
+
use_torchaudio_streaming : bool
|
1135 |
+
Whether the audio file can be loaded in a streaming fashion. If not,
|
1136 |
+
transcription is still performed through chunks of audio, but the
|
1137 |
+
entire audio file is fetched and loaded at once.
|
1138 |
+
This skips the usual fetching method and instead resolves the URI
|
1139 |
+
using torchaudio (via ffmpeg).
|
1140 |
+
|
1141 |
+
Returns
|
1142 |
+
-------
|
1143 |
+
str
|
1144 |
+
The audio file transcription produced by this ASR system.
|
1145 |
+
"""
|
1146 |
+
|
1147 |
+
pred = ""
|
1148 |
+
|
1149 |
+
for text_chunk in self.transcribe_file_streaming(
|
1150 |
+
path, dynchunktrain_config, use_torchaudio_streaming
|
1151 |
+
):
|
1152 |
+
pred += text_chunk
|
1153 |
+
|
1154 |
+
return pred
|
1155 |
+
|
1156 |
+
def make_streaming_context(self, dynchunktrain_config: DynChunkTrainConfig):
|
1157 |
+
"""Create a blank streaming context to be passed around for chunk
|
1158 |
+
encoding/transcription.
|
1159 |
+
|
1160 |
+
Arguments
|
1161 |
+
---------
|
1162 |
+
dynchunktrain_config : DynChunkTrainConfig
|
1163 |
+
Streaming configuration. Sane values and how much time chunks
|
1164 |
+
actually represent is model-dependent.
|
1165 |
+
|
1166 |
+
Returns
|
1167 |
+
-------
|
1168 |
+
ASRStreamingContext
|
1169 |
+
"""
|
1170 |
+
|
1171 |
+
return ASRStreamingContext(
|
1172 |
+
config=dynchunktrain_config,
|
1173 |
+
fea_extractor_context=self.hparams.fea_streaming_extractor.make_streaming_context(),
|
1174 |
+
encoder_context=self.mods.enc.make_streaming_context(
|
1175 |
+
dynchunktrain_config
|
1176 |
+
),
|
1177 |
+
decoder_context=self.hparams.make_decoder_streaming_context(),
|
1178 |
+
tokenizer_context=None,
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
def get_chunk_size_frames(
|
1182 |
+
self, dynchunktrain_config: DynChunkTrainConfig
|
1183 |
+
) -> int:
|
1184 |
+
"""Returns the chunk size in actual audio samples, i.e. the exact
|
1185 |
+
expected length along the time dimension of an input chunk tensor (as
|
1186 |
+
passed to :meth:`~StreamingASR.encode_chunk` and similar low-level
|
1187 |
+
streaming functions).
|
1188 |
+
|
1189 |
+
Arguments
|
1190 |
+
---------
|
1191 |
+
dynchunktrain_config : DynChunkTrainConfig
|
1192 |
+
The streaming configuration to determine the chunk frame count of.
|
1193 |
+
|
1194 |
+
Returns
|
1195 |
+
-------
|
1196 |
+
chunk size
|
1197 |
+
"""
|
1198 |
+
|
1199 |
+
return (self.filter_props.stride - 1) * dynchunktrain_config.chunk_size
|
1200 |
+
|
1201 |
+
@torch.no_grad()
|
1202 |
+
def encode_chunk(
|
1203 |
+
self,
|
1204 |
+
context: ASRStreamingContext,
|
1205 |
+
chunk: torch.Tensor,
|
1206 |
+
chunk_len: Optional[torch.Tensor] = None,
|
1207 |
+
):
|
1208 |
+
"""Encoding of a batch of audio chunks into a batch of encoded
|
1209 |
+
sequences.
|
1210 |
+
For full speech-to-text offline transcription, use `transcribe_batch` or
|
1211 |
+
`transcribe_file`.
|
1212 |
+
Must be called over a given context in the correct order of chunks over
|
1213 |
+
time.
|
1214 |
+
|
1215 |
+
Arguments
|
1216 |
+
---------
|
1217 |
+
context : ASRStreamingContext
|
1218 |
+
Mutable streaming context object, which must be specified and reused
|
1219 |
+
across calls when streaming.
|
1220 |
+
You can obtain an initial context by calling
|
1221 |
+
`asr.make_streaming_context(config)`.
|
1222 |
+
|
1223 |
+
chunk : torch.Tensor
|
1224 |
+
The tensor for an audio chunk of shape `[batch size, time]`.
|
1225 |
+
The time dimension must strictly match
|
1226 |
+
`asr.get_chunk_size_frames(config)`.
|
1227 |
+
The waveform is expected to be in the model's expected format (i.e.
|
1228 |
+
the sampling rate must be correct).
|
1229 |
+
|
1230 |
+
chunk_len : torch.Tensor, optional
|
1231 |
+
The relative chunk length tensor of shape `[batch size]`. This is to
|
1232 |
+
be used when the audio in one of the chunks of the batch is ending
|
1233 |
+
within this chunk.
|
1234 |
+
If unspecified, equivalent to `torch.ones((batch_size,))`.
|
1235 |
+
|
1236 |
+
Returns
|
1237 |
+
-------
|
1238 |
+
torch.Tensor
|
1239 |
+
Encoded output, of a model-dependent shape."""
|
1240 |
+
|
1241 |
+
if chunk_len is None:
|
1242 |
+
chunk_len = torch.ones((chunk.size(0),))
|
1243 |
+
|
1244 |
+
chunk = chunk.float()
|
1245 |
+
chunk, chunk_len = chunk.to(self.device), chunk_len.to(self.device)
|
1246 |
+
|
1247 |
+
assert chunk.shape[-1] <= self.get_chunk_size_frames(context.config)
|
1248 |
+
|
1249 |
+
x = self.hparams.fea_streaming_extractor(
|
1250 |
+
chunk, context=context.fea_extractor_context, lengths=chunk_len
|
1251 |
+
)
|
1252 |
+
x = self.mods.enc.forward_streaming(x, context.encoder_context)
|
1253 |
+
x = self.mods.proj_enc(x)
|
1254 |
+
return x
|
1255 |
+
|
1256 |
+
@torch.no_grad()
|
1257 |
+
def decode_chunk(
|
1258 |
+
self, context: ASRStreamingContext, x: torch.Tensor
|
1259 |
+
) -> Tuple[List[str], List[List[int]]]:
|
1260 |
+
"""Decodes the output of the encoder into tokens and the associated
|
1261 |
+
transcription.
|
1262 |
+
Must be called over a given context in the correct order of chunks over
|
1263 |
+
time.
|
1264 |
+
|
1265 |
+
Arguments
|
1266 |
+
---------
|
1267 |
+
context : ASRStreamingContext
|
1268 |
+
Mutable streaming context object, which should be the same object
|
1269 |
+
that was passed to `encode_chunk`.
|
1270 |
+
|
1271 |
+
x : torch.Tensor
|
1272 |
+
The output of `encode_chunk` for a given chunk.
|
1273 |
+
|
1274 |
+
Returns
|
1275 |
+
-------
|
1276 |
+
list of str
|
1277 |
+
Decoded tokens of length `batch_size`. The decoded strings can be
|
1278 |
+
of 0-length.
|
1279 |
+
list of list of output token hypotheses
|
1280 |
+
List of length `batch_size`, each holding a list of tokens of any
|
1281 |
+
length `>=0`.
|
1282 |
+
"""
|
1283 |
+
tokens = self.hparams.decoding_function(x, context.decoder_context)
|
1284 |
+
|
1285 |
+
# initialize token context for real now that we know the batch size
|
1286 |
+
if context.tokenizer_context is None:
|
1287 |
+
context.tokenizer_context = [
|
1288 |
+
self.hparams.make_tokenizer_streaming_context()
|
1289 |
+
for _ in range(len(tokens))
|
1290 |
+
]
|
1291 |
+
|
1292 |
+
words = [
|
1293 |
+
self.hparams.tokenizer_decode_streaming(
|
1294 |
+
self.hparams.tokenizer, cur_tokens, context.tokenizer_context[i]
|
1295 |
+
)
|
1296 |
+
for i, cur_tokens in enumerate(tokens)
|
1297 |
+
]
|
1298 |
+
|
1299 |
+
return words, tokens
|
1300 |
+
|
1301 |
+
def transcribe_chunk(
|
1302 |
+
self,
|
1303 |
+
context: ASRStreamingContext,
|
1304 |
+
chunk: torch.Tensor,
|
1305 |
+
chunk_len: Optional[torch.Tensor] = None,
|
1306 |
+
):
|
1307 |
+
"""Transcription of a batch of audio chunks into transcribed text.
|
1308 |
+
Must be called over a given context in the correct order of chunks over
|
1309 |
+
time.
|
1310 |
+
|
1311 |
+
Arguments
|
1312 |
+
---------
|
1313 |
+
context : ASRStreamingContext
|
1314 |
+
Mutable streaming context object, which must be specified and reused
|
1315 |
+
across calls when streaming.
|
1316 |
+
You can obtain an initial context by calling
|
1317 |
+
`asr.make_streaming_context(config)`.
|
1318 |
+
chunk : torch.Tensor
|
1319 |
+
The tensor for an audio chunk of shape `[batch size, time]`.
|
1320 |
+
The time dimension must strictly match
|
1321 |
+
`asr.get_chunk_size_frames(config)`.
|
1322 |
+
The waveform is expected to be in the model's expected format (i.e.
|
1323 |
+
the sampling rate must be correct).
|
1324 |
+
chunk_len : torch.Tensor, optional
|
1325 |
+
The relative chunk length tensor of shape `[batch size]`. This is to
|
1326 |
+
be used when the audio in one of the chunks of the batch is ending
|
1327 |
+
within this chunk.
|
1328 |
+
If unspecified, equivalent to `torch.ones((batch_size,))`.
|
1329 |
+
|
1330 |
+
Returns
|
1331 |
+
-------
|
1332 |
+
str
|
1333 |
+
Transcribed string for this chunk, might be of length zero.
|
1334 |
+
"""
|
1335 |
+
|
1336 |
+
if chunk_len is None:
|
1337 |
+
chunk_len = torch.ones((chunk.size(0),))
|
1338 |
+
|
1339 |
+
chunk = chunk.float()
|
1340 |
+
chunk, chunk_len = chunk.to(self.device), chunk_len.to(self.device)
|
1341 |
+
|
1342 |
+
x = self.encode_chunk(context, chunk, chunk_len)
|
1343 |
+
words, _ = self.decode_chunk(context, x)
|
1344 |
+
|
1345 |
+
return words
|
brain.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33809a026a2c1febce7b03c8aafaee4ddfc851b2c70f180f8c06bf1017f4df5c
|
3 |
+
size 46
|
counter.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95aebc97bc646c67fdcd923a5965b001f3c8a5c4d3a77075112e12a3a311d760
|
3 |
+
size 3
|
hyperparams.yaml
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Data parameters:
|
2 |
+
# With data_parallel batch_size is split into N jobs.
|
3 |
+
# With DDP batch_size is multiplied by N jobs.
|
4 |
+
batch_size: 6
|
5 |
+
test_batch_size: 2
|
6 |
+
# We remove utterances longer than 90s in the train/dev/test sets as
|
7 |
+
# longer sentences certainly correspond to "open microphones".
|
8 |
+
avoid_if_longer_than: 90.0
|
9 |
+
avoid_if_smaller_than: 0.0
|
10 |
+
dataloader_options:
|
11 |
+
batch_size: 6
|
12 |
+
num_workers: 6
|
13 |
+
shuffle: true
|
14 |
+
test_dataloader_options:
|
15 |
+
batch_size: 2
|
16 |
+
num_workers: 3
|
17 |
+
|
18 |
+
# Feature parameters:
|
19 |
+
sample_rate: 16000
|
20 |
+
feats_dim: 1024
|
21 |
+
|
22 |
+
# Training parameters:
|
23 |
+
number_of_epochs: 80
|
24 |
+
lr: 1
|
25 |
+
lr_wav2vec: 0.0001
|
26 |
+
annealing_factor: 0.8
|
27 |
+
annealing_factor_wav2vec: 0.9
|
28 |
+
improvement_threshold: 0.0025
|
29 |
+
improvement_threshold_wav2vec: 0.0025
|
30 |
+
patient: 0
|
31 |
+
patient_wav2vec: 0
|
32 |
+
sorting: random
|
33 |
+
|
34 |
+
# Model parameters:
|
35 |
+
activation: &id001 !name:torch.nn.LeakyReLU
|
36 |
+
dropout: 0.15
|
37 |
+
cnn_blocks: 0
|
38 |
+
rnn_layers: 0
|
39 |
+
dnn_blocks: 1
|
40 |
+
rnn_neurons: 0
|
41 |
+
dnn_neurons: 1024
|
42 |
+
|
43 |
+
# Wav2Vec parameters:
|
44 |
+
freeze: false
|
45 |
+
|
46 |
+
# Decoding parameters:
|
47 |
+
blank_index: 0
|
48 |
+
|
49 |
+
# Outputs:
|
50 |
+
output_neurons: 113
|
51 |
+
|
52 |
+
# ------ Functions and classes
|
53 |
+
|
54 |
+
epoch_counter: &id008 !new:speechbrain.utils.epoch_loop.EpochCounter
|
55 |
+
|
56 |
+
limit: 80
|
57 |
+
|
58 |
+
wav2vec: &id002 !new:speechbrain.lobes.models.huggingface_transformers.wav2vec2.Wav2Vec2
|
59 |
+
source: microsoft/wavlm-large
|
60 |
+
output_norm: true
|
61 |
+
freeze: false
|
62 |
+
save_path: results/TARIC_SLU_wav2vec_wavLM_with_intent_criterion_a100_copie/1212/save/wav2vec.pt
|
63 |
+
|
64 |
+
dec: &id003 !new:speechbrain.lobes.models.VanillaNN.VanillaNN
|
65 |
+
input_shape: [null, null, 1024]
|
66 |
+
activation: *id001
|
67 |
+
dnn_blocks: 1
|
68 |
+
dnn_neurons: 1024
|
69 |
+
|
70 |
+
output_lin: &id004 !new:speechbrain.nnet.linear.Linear
|
71 |
+
|
72 |
+
input_size: 1024
|
73 |
+
n_neurons: 113
|
74 |
+
bias: true
|
75 |
+
|
76 |
+
softmax: !new:speechbrain.nnet.activations.Softmax
|
77 |
+
apply_log: true
|
78 |
+
|
79 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
80 |
+
blank_index: 0
|
81 |
+
|
82 |
+
modules:
|
83 |
+
wav2vec: *id002
|
84 |
+
dec: *id003
|
85 |
+
output_lin: *id004
|
86 |
+
model: &id005 !new:torch.nn.ModuleList
|
87 |
+
- [*id003, *id004]
|
88 |
+
model_wav2vec: !new:torch.nn.ModuleList
|
89 |
+
- [*id002]
|
90 |
+
opt_class: !name:torch.optim.Adadelta
|
91 |
+
lr: 1
|
92 |
+
rho: 0.95
|
93 |
+
eps: 1.e-8
|
94 |
+
|
95 |
+
opt_class_wav2vec: !name:torch.optim.Adam
|
96 |
+
lr: 0.0001
|
97 |
+
|
98 |
+
lr_annealing: &id006 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
99 |
+
initial_value: 1
|
100 |
+
improvement_threshold: 0.0025
|
101 |
+
annealing_factor: 0.8
|
102 |
+
patient: 0
|
103 |
+
|
104 |
+
lr_annealing_wav2vec: &id007 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
105 |
+
initial_value: 0.0001
|
106 |
+
improvement_threshold: 0.0025
|
107 |
+
annealing_factor: 0.9
|
108 |
+
patient: 0
|
109 |
+
|
110 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
111 |
+
checkpoints_dir: results/TARIC_SLU_wav2vec_wavLM_with_intent_criterion_a100_copie/1212/save
|
112 |
+
recoverables:
|
113 |
+
model: *id005
|
114 |
+
wav2vec: *id002
|
115 |
+
lr_annealing: *id006
|
116 |
+
lr_annealing_wav2vec: *id007
|
117 |
+
counter: *id008
|
118 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
119 |
+
save_file: results/TARIC_SLU_wav2vec_wavLM_with_intent_criterion_a100_copie/1212/train_log.txt
|
120 |
+
|
121 |
+
ctc_computer: !name:speechbrain.utils.metric_stats.MetricStats
|
122 |
+
metric: !name:speechbrain.nnet.losses.ctc_loss
|
123 |
+
blank_index: 0
|
124 |
+
reduction: batch
|
125 |
+
|
126 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
127 |
+
|
128 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
129 |
+
merge_tokens: true
|
130 |
+
|
131 |
+
coer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
132 |
+
extract_concepts_values: true
|
133 |
+
keep_values: false
|
134 |
+
tag_in: <
|
135 |
+
tag_out: >
|
136 |
+
|
137 |
+
cver_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
138 |
+
extract_concepts_values: true
|
139 |
+
keep_values: true
|
140 |
+
tag_in: <
|
141 |
+
tag_out: >
|
142 |
+
|
143 |
+
tokenizer: !new:speechbrain.dataio.encoder.CTCTextEncoder
|
144 |
+
|
145 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
146 |
+
loadables:
|
147 |
+
model: !ref <model>
|
148 |
+
wav2vec: !ref <wav2vec>
|
149 |
+
tokenizer: !ref <tokenizer>
|
150 |
+
paths:
|
151 |
+
model: !ref /content/sample_data/SLU/model.cpkt
|
152 |
+
wav2vec: !ref /content/sample_data/SLU/wav2vec.cpkt
|
153 |
+
tokenizer: !ref /content/sample_data/SLU/label_encoder.txt
|
154 |
+
|
155 |
+
decoding_function: !name:speechbrain.decoders.ctc_greedy_decode
|
156 |
+
blank_id: 0
|
157 |
+
|
158 |
+
# Tag list:
|
159 |
+
tag_list: <politeness>, <directives_query>, <directives_answer>, <age>, <age_req>,
|
160 |
+
<age_ticket>, <an>, <answer>, <arrival_time>, <card_price>, <card_type>, <city>,
|
161 |
+
<city_name_arrival>, <city_name_before>, <city_name_departure>, <city_name_direction>,
|
162 |
+
<class_number>, <class_type>, <command_task>, <comparatif_age>, <comparatif_distance>,
|
163 |
+
<comparatif_price>, <comparatif_time>, <coreference_city>, <coreference_departure>,
|
164 |
+
<date>, <day>, <departure_time>, <discount_gain>, <discount_pourcent>, <duration>,
|
165 |
+
<duration_req>, <existance>, <existance_req>, <hour_req>, <money_exchange>, <month>,
|
166 |
+
<negation>, <number>, <number_class>, <number_of_train>, <number_req>, <object>,
|
167 |
+
<option>, <other_transport>, <part_price>, <part_time>, <period_day>, <period_year>,
|
168 |
+
<person_name>, <price_req>, <rang>, <ref_object>, <ref_person>, <ref_time>, <relative_day>,
|
169 |
+
<relative_time>, <state>, <tarif>, <task>, <ticket_number>, <ticket_price>, <ticket_type>,
|
170 |
+
<time>, <train_type>
|
labelencoder.txt
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'<politeness>' => 109
|
2 |
+
'_' => 1
|
3 |
+
'A' => 2
|
4 |
+
'y' => 3
|
5 |
+
't' => 4
|
6 |
+
'f' => 5
|
7 |
+
'D' => 6
|
8 |
+
'l' => 7
|
9 |
+
'x' => 8
|
10 |
+
'w' => 9
|
11 |
+
'<directives_query>' => 10
|
12 |
+
'm' => 11
|
13 |
+
'E' => 12
|
14 |
+
'<hour_req>' => 13
|
15 |
+
'q' => 14
|
16 |
+
'3' => 15
|
17 |
+
'>' => 16
|
18 |
+
'b' => 17
|
19 |
+
'h' => 18
|
20 |
+
'<object>' => 19
|
21 |
+
'r' => 20
|
22 |
+
'n' => 21
|
23 |
+
'<directives_answer>' => 22
|
24 |
+
'<departure_time>' => 23
|
25 |
+
's' => 24
|
26 |
+
'<existance_req>' => 25
|
27 |
+
'v' => 26
|
28 |
+
'<ref_object>' => 27
|
29 |
+
'H' => 28
|
30 |
+
'd' => 29
|
31 |
+
'<relative_time>' => 30
|
32 |
+
'<answer>' => 31
|
33 |
+
'k' => 32
|
34 |
+
'ç' => 33
|
35 |
+
'<coreference_departure>' => 34
|
36 |
+
'<existance>' => 35
|
37 |
+
'<ticket_number>' => 36
|
38 |
+
'z' => 37
|
39 |
+
'<city_name_arrival>' => 38
|
40 |
+
'S' => 39
|
41 |
+
'j' => 40
|
42 |
+
'<train_type>' => 41
|
43 |
+
'9' => 42
|
44 |
+
'g' => 43
|
45 |
+
'<arrival_time>' => 44
|
46 |
+
'<command_task>' => 45
|
47 |
+
'T' => 46
|
48 |
+
'<ticket_price>' => 47
|
49 |
+
'<discount_gain>' => 48
|
50 |
+
'<discount_pourcent>' => 49
|
51 |
+
'<number_of_train>' => 50
|
52 |
+
'<person_name>' => 51
|
53 |
+
'<comparatif_time>' => 52
|
54 |
+
'<card_type>' => 53
|
55 |
+
'<relative_day>' => 54
|
56 |
+
'<negation>' => 55
|
57 |
+
'<price_req>' => 56
|
58 |
+
'<class_type>' => 57
|
59 |
+
'<money_exchange>' => 58
|
60 |
+
'<card_price>' => 59
|
61 |
+
'<ticket_type>' => 60
|
62 |
+
'<city_name_direction>' => 61
|
63 |
+
'<other_transport>' => 62
|
64 |
+
'Z' => 63
|
65 |
+
'7' => 64
|
66 |
+
'<age_ticket>' => 65
|
67 |
+
'<comparatif_age>' => 66
|
68 |
+
'<age>' => 67
|
69 |
+
'<tarif>' => 68
|
70 |
+
'<rang>' => 69
|
71 |
+
'<part_time>' => 70
|
72 |
+
'<period_day>' => 71
|
73 |
+
'<duration_req>' => 72
|
74 |
+
'<number>' => 73
|
75 |
+
'<part_price>' => 74
|
76 |
+
'ڥ' => 75
|
77 |
+
'<day>' => 76
|
78 |
+
'<coreference_city>' => 77
|
79 |
+
'<ref_time>' => 78
|
80 |
+
'<state>' => 79
|
81 |
+
'<city_name_departure>' => 80
|
82 |
+
'<comparatif_price>' => 81
|
83 |
+
'<duration>' => 82
|
84 |
+
'.' => 83
|
85 |
+
'<city_name_before>' => 84
|
86 |
+
'<date>' => 85
|
87 |
+
'<ref_person>' => 86
|
88 |
+
'<comparatif_distance>' => 87
|
89 |
+
'<number_req>' => 88
|
90 |
+
'<age_req>' => 89
|
91 |
+
'<option>' => 90
|
92 |
+
'<time>' => 91
|
93 |
+
'<an>' => 92
|
94 |
+
'<period_year>' => 93
|
95 |
+
'<month>' => 94
|
96 |
+
'$' => 95
|
97 |
+
'i' => 96
|
98 |
+
'e' => 97
|
99 |
+
'c' => 98
|
100 |
+
'u' => 99
|
101 |
+
'a' => 100
|
102 |
+
'p' => 101
|
103 |
+
'o' => 102
|
104 |
+
'<class_number>' => 103
|
105 |
+
'<directives_answer_request>' => 104
|
106 |
+
'<task>' => 105
|
107 |
+
'<city>' => 106
|
108 |
+
'<directives_request>' => 107
|
109 |
+
'<number_class>' => 108
|
110 |
+
'<blank>' => 0
|
111 |
+
================
|
112 |
+
'starting_index' => 0
|
113 |
+
'blank_label' => '<blank>'
|
lr_annealing.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c4ea943b3cc3d6c91aa6843cf37362ffcad693e8f4cddfb85159458cc445598
|
3 |
+
size 697
|
lr_annealing_wav2vec.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9043595d8cb86f5dc698ec4c3880a6eba4ba0994c1389703069a1ddac323e905
|
3 |
+
size 713
|
model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94ad8f0789775a5708c8a5c365e1f5d7442270963566248075043d606570884d
|
3 |
+
size 4663251
|
optimizer.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a18feb3922345456cb19d72567f0145816f4e7936d4e07917d35e50103c7bd0
|
3 |
+
size 9326243
|
optimizer_wav2vec.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2acedf6d0996452544892ba315e242de4ef1bb38fef3609e355a1b7d3e51903
|
3 |
+
size 2524050533
|
wav2vec.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e85d339d968c46bb6acb664586d8a11fcfa247f7f77546735a040649a47d8f4
|
3 |
+
size 1262004913
|