GGUF
Inference Endpoints
conversational
zuxin-llm commited on
Commit
73fc202
1 Parent(s): a8bb34a

Upload 7 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ xLAM-1B-FC-r.F16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ xLAM-1B-FC-r.Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
38
+ xLAM-1B-FC-r.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
39
+ xLAM-1B-FC-r.Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ xLAM-1B-FC-r.Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
41
+ xLAM-1B-FC-r.Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,95 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ ---
4
+ <p align="center">
5
+ <img width="300px" alt="xLAM" src="https://huggingface.co/Salesforce/xLAM-v0.1-r/resolve/main/xlam-no-background.png">
6
+ </p>
7
+ <p align="center"><a href="https://apigen-pipeline.github.io/">[🏠Homepage]</a> | <a href="https://coder.deepseek.com/">[📄 Paper]</a> | <a href="https://coder.deepseek.com/">[📚 Dataset]</a></p>
8
+ <hr>
9
+
10
+ ## Model Summary
11
+
12
+ This repo provides the GGUF format for the xLAM-1B-FC-r model. Here's a link to original model [xLAM-1B-FC-r](https://huggingface.co/agentstudio-family/xLAM-1B-FC-r)
13
+ This model is designed for function composition and tool utilization tasks, providing fast, accurate, and structured responses based on the input queries and available tools.
14
+ We use [llama.cpp](https://github.com/ggerganov/llama.cpp) framework to convert models to GGUF. GGUF model files offer significant advantages in terms of interoperability, efficiency, scalability, flexibility, and ease of use. They are particularly valuable in applications requiring efficient model deployment, sharing, and optimization across diverse platforms and hardware environments.
15
+
16
+ ## Model Overview
17
+
18
+ The `xLAM-1B-FC-r` model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct), optimized for tasks that require composing functions and utilizing tools to answer queries. For more details, check our [paper](https://arxiv.org/abs/2406.18518).
19
+
20
+ ## How to download GGUF files
21
+
22
+ 1. **Install Hugging Face CLI:**
23
+
24
+ ```
25
+ pip install huggingface-hub>=0.17.1
26
+ ```
27
+
28
+ 2. **Login to Hugging Face:**
29
+ ```
30
+ huggingface-cli login
31
+ ```
32
+
33
+ 3. **Download the GGUF model:**
34
+ ```
35
+ huggingface-cli download agentstudio-family/xLAM-1b-fc-gguf-r xLAM-1B-FC-r.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
36
+ ```
37
+
38
+ ## Prompt template
39
+ ```
40
+ You are an AI assistant for function calling.For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer
41
+ ### Instruction:
42
+ [BEGIN OF TASK INSTRUCTION]
43
+ {task_instruction}
44
+ [END OF TASK INSTRUCTION]
45
+
46
+ [BEGIN OF AVAILABLE TOOLS]
47
+ {xlam_format_tools}
48
+ [END OF AVAILABLE TOOLS]
49
+
50
+ [BEGIN OF FORMAT INSTRUCTION]
51
+ {format_instruction}
52
+ [END OF FORMAT INSTRUCTION]
53
+
54
+ [BEGIN OF QUERY]
55
+ {query}
56
+ [END OF QUERY]
57
+
58
+ ### Response:
59
+
60
+ ```
61
+ For more information, refer to [prompt-documentation](https://huggingface.co/agentstudio-family/xLAM-1B-FC-r#basic-usage-with-huggingface)
62
+ ## Usage
63
+
64
+ ### Command Line
65
+
66
+ 1. Install llama.cpp framework from the source [here](https://github.com/ggerganov/llama.cpp)
67
+ 2. Run the inference task as below, to configure generation related paramter, refer to [llama.cpp](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
68
+ ```
69
+ ./llama-cli -m [PATH-TO-LOCAL-GGUF] -p "[PROMPT]"
70
+ ```
71
+ 3. Example
72
+ ```
73
+ ./llama-cli -m xLAM-1B-FC-r.Q8_0.gguf -p "You are an AI assistant for function calling.For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n### Instruction:\n[BEGIN OF TASK INSTRUCTION]\nYou are an expert in composing functions. You are given a question and a set of possible functions.\nBased on the question, you will need to make one or more function/tool calls to achieve the purpose.\nIf none of the functions can be used, point it out and refuse to answer.\nIf the given question lacks the parameters required by the function, also point it out.\n[END OF TASK INSTRUCTION]\n\n[BEGIN OF AVAILABLE TOOLS]\n{\"name\": \"get_weather\", \"description\": \"Get the current weather for a location\", \"parameters\": {\"location\": {\"type\": \"string\", \"description\": \"The city and state, e.g. San Francisco, CA\"}, \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"], \"description\": \"The unit of temperature to return\"}}}\n[END OF AVAILABLE TOOLS]\n\n[BEGIN OF FORMAT INSTRUCTION]\nThe output MUST strictly adhere to the following JSON format, and NO other text MUST be included.\nThe example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'\n```\n{\n \"tool_calls\": [\n {\"name\": \"func_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}},\n ... (more tool calls as required)\n ]\n}\n```\n[END OF FORMAT INSTRUCTION]\n\n[BEGIN OF QUERY]\nWhat's the weather forecast for Tokyo?\n[END OF QUERY]\n\n\n### Response:"
74
+
75
+ ```
76
+
77
+ ### Python framwork
78
+
79
+ 1. Install [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
80
+ ```
81
+ pip install llama-cpp-python
82
+ ```
83
+ 2. Refer to [llama-cpp-API](https://github.com/abetlen/llama-cpp-python?tab=readme-ov-file#high-level-api), here's a example below
84
+ ```python
85
+ from llama_cpp import Llama
86
+
87
+ llm = Llama(
88
+ model_path="[PATH-TO-MODEL]"
89
+ )
90
+ output = llm(
91
+ "You are an AI assistant for function calling.For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n### Instruction:\n[BEGIN OF TASK INSTRUCTION]\nYou are an expert in composing functions. You are given a question and a set of possible functions.\nBased on the question, you will need to make one or more function/tool calls to achieve the purpose.\nIf none of the functions can be used, point it out and refuse to answer.\nIf the given question lacks the parameters required by the function, also point it out.\n[END OF TASK INSTRUCTION]\n\n[BEGIN OF AVAILABLE TOOLS]\n{\"name\": \"get_weather\", \"description\": \"Get the current weather for a location\", \"parameters\": {\"location\": {\"type\": \"string\", \"description\": \"The city and state, e.g. San Francisco, CA\"}, \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"], \"description\": \"The unit of temperature to return\"}}}\n[END OF AVAILABLE TOOLS]\n\n[BEGIN OF FORMAT INSTRUCTION]\nThe output MUST strictly adhere to the following JSON format, and NO other text MUST be included.\nThe example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'\n```\n{\n \"tool_calls\": [\n {\"name\": \"func_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}},\n ... (more tool calls as required)\n ]\n}\n```\n[END OF FORMAT INSTRUCTION]\n\n[BEGIN OF QUERY]\nWhat's the weather forecast for Tokyo?\n[END OF QUERY]\n\n\n### Response:",
92
+ echo=True # Echo the prompt back in the output
93
+ ) # Generate a completion, can also call create_completion
94
+ print(output)
95
+ ```
xLAM-1B-FC-r.F16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40cf3764bce64bb972244177ca03c78fcd90af582c98ac997a5ba43099a2c971
3
+ size 2694314368
xLAM-1B-FC-r.Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47608d7df20f3e2514140310f0c0273dcdaab94e2d6f0acc0da50b20466d5068
3
+ size 559716736
xLAM-1B-FC-r.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79e63407a3d4d545ebd72b0fa8800bfd8f0ac724e45feb5402d8e55f057801a9
3
+ size 775936384
xLAM-1B-FC-r.Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ea7b14f8594698e074c4613ecee2529504ae12d7e1297ef0ea201fcc1dc1f92
3
+ size 873453952
xLAM-1B-FC-r.Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d6714708355339735f59958d2e594fa599cb79ba8fbdbc239ad54fc233ee676
3
+ size 813963648
xLAM-1B-FC-r.Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fc3e2ae20a447d9402d595007dcbb4ec18bf2b96b4b4fa9c132c763ef292385
3
+ size 1432091008