|
|
|
|
|
|
|
""" CodeT5+ model configuration""" |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
import copy |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
class CodeT5pModuleConfig(PretrainedConfig): |
|
model_type = "codet5p_module" |
|
attribute_map = { |
|
"max_position_embeddings": "n_positions", |
|
"hidden_size": "n_embd", |
|
"num_attention_heads": "n_head", |
|
"num_hidden_layers": "n_layer", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50400, |
|
n_positions=2048, |
|
n_ctx=2048, |
|
n_embd=4096, |
|
n_layer=28, |
|
n_head=16, |
|
rotary_dim=64, |
|
n_inner=None, |
|
activation_function="gelu_new", |
|
resid_pdrop=0.0, |
|
embd_pdrop=0.0, |
|
attn_pdrop=0.0, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
scale_attn_weights=True, |
|
use_cache=True, |
|
bos_token_id=50256, |
|
eos_token_id=50256, |
|
tie_word_embeddings=False, |
|
**kwargs |
|
): |
|
self.vocab_size = vocab_size |
|
self.n_ctx = n_ctx |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_inner = n_inner |
|
self.rotary_dim = rotary_dim |
|
self.activation_function = activation_function |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attn_pdrop = attn_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.scale_attn_weights = scale_attn_weights |
|
self.use_cache = use_cache |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
super().__init__( |
|
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs |
|
) |
|
|
|
|
|
|
|
class CodeT5pConfig(PretrainedConfig): |
|
model_type = "codet5p" |
|
is_composition = True |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
assert ( |
|
"encoder" in kwargs and "decoder" in kwargs |
|
), "Config has to be initialized with encoder and decoder config" |
|
encoder_config = kwargs.pop("encoder") |
|
decoder_config = kwargs.pop("decoder") |
|
encoder_model_type = encoder_config.pop("model_type") |
|
decoder_model_type = decoder_config.pop("model_type") |
|
|
|
if encoder_model_type != decoder_model_type: |
|
logger.warning("Encoder and decoder model types are different") |
|
|
|
self.encoder = CodeT5pModuleConfig(**encoder_config) |
|
self.decoder = CodeT5pModuleConfig(**decoder_config) |
|
self.is_encoder_decoder = True |
|
|
|
@classmethod |
|
def from_encoder_decoder_configs( |
|
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs |
|
) -> PretrainedConfig: |
|
logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") |
|
decoder_config.is_decoder = True |
|
decoder_config.add_cross_attention = True |
|
|
|
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default *to_dict()* from *PretrainedConfig*. |
|
|
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = copy.deepcopy(self.__dict__) |
|
output["encoder"] = self.encoder.to_dict() |
|
output["decoder"] = self.decoder.to_dict() |
|
output["model_type"] = self.__class__.model_type |
|
return output |
|
|