codet5p-220m-bimodal / configuration_codet5p_matching.py
yuewang-sf's picture
update model files
a18f941
raw
history blame
2.81 kB
# coding=utf-8
# Copyright 2023 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
""" CodeT5+ embedding model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class CodeT5pMatchingConfig(PretrainedConfig):
model_type = "codet5p_matching"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__(
self,
vocab_size=32103,
d_model=768,
embed_dim=256,
d_kv=64,
d_ff=3072,
num_layers=12,
num_decoder_layers=None,
num_heads=12,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="relu",
is_encoder_decoder=False,
use_cache=True,
pad_token_id=0,
eos_token_id=2,
**kwargs
):
self.vocab_size = vocab_size
self.d_model = d_model
self.embed_dim = embed_dim
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.use_cache = use_cache
act_info = self.feed_forward_proj.split("-")
self.dense_act_fn = act_info[-1]
self.is_gated_act = act_info[0] == "gated"
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'"
)
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
self.dense_act_fn = "gelu_new"
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)