SalehAhmad commited on
Commit
642a0cd
1 Parent(s): cfc4a4d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -2
README.md CHANGED
@@ -1,9 +1,15 @@
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
3
  ---
4
  ## Training procedure
5
 
6
-
7
  The following `bitsandbytes` quantization config was used during training:
8
  - quant_method: QuantizationMethod.BITS_AND_BYTES
9
  - load_in_8bit: False
@@ -15,7 +21,51 @@ The following `bitsandbytes` quantization config was used during training:
15
  - bnb_4bit_quant_type: nf4
16
  - bnb_4bit_use_double_quant: False
17
  - bnb_4bit_compute_dtype: bfloat16
 
18
  ### Framework versions
 
19
 
 
 
 
20
 
21
- - PEFT 0.4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - QA
8
+ - Objective QA
9
+ - Subjective QA
10
  ---
11
  ## Training procedure
12
 
 
13
  The following `bitsandbytes` quantization config was used during training:
14
  - quant_method: QuantizationMethod.BITS_AND_BYTES
15
  - load_in_8bit: False
 
21
  - bnb_4bit_quant_type: nf4
22
  - bnb_4bit_use_double_quant: False
23
  - bnb_4bit_compute_dtype: bfloat16
24
+
25
  ### Framework versions
26
+ - PEFT 0.4.0
27
 
28
+ ## Methods to Infer
29
+ ```
30
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline, TextStreamer
31
 
32
+ def stream(user_prompt):
33
+ runtimeFlag = "cuda:0"
34
+ inputs = tokenizer([user_prompt], return_tensors="pt").to(runtimeFlag)
35
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
36
+ _ = model.generate(**inputs, streamer=streamer, max_new_tokens=2046)
37
+
38
+ def infer(user_prompt):
39
+ runtimeFlag = "cuda:0"
40
+ inputs = tokenizer([user_prompt], return_tensors="pt").to(runtimeFlag)
41
+ outputs = model.generate(**inputs, max_new_tokens=2046)
42
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
43
+
44
+ def infer_pipeline(user_prompt):
45
+ runtimeFlag = "cuda:0"
46
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=2046, return_full_text=False, device_map="auto",
47
+ kwargs={'stop': ["###Human:"]})
48
+ return pipe(user_prompt)
49
+ ```
50
+
51
+ ### Sample Inputs:
52
+ ```
53
+ Sys_OBJECTIVE = '''You are a chatbot, who is helping to curate datasets. When given an input context paragraph, you have to generate only one mcq question,
54
+ it's options and it's actual answer. You have to follow the given JSON format for generating the question, options and answer.
55
+ Donot use words like "in this paragraph", "from the context" etc. The questions should be independent of any other question.
56
+ '''
57
+
58
+ Sys_SUBJECTIVE = '''You are a chatbot, who is helping to curate datasets. When given an input context paragraph, you have to generate only one subjective quesion,
59
+ and it's actual answer. You have to follow the given JSON format for generating the question and answer.
60
+ Donot use words like "in this paragraph", "from the context" etc. The questions should be independent of any other question.'''
61
+
62
+ Prompt = '''And in the leadership styles it will be that is the is the there will be the changing into the leadership styles and in the leadership styles it will be that is the the approach will be for doing this type of the research which has been adopted in this paper is that is the degree of the correlation and its statistical significance between the self-assess leadership behavior and the 360 degree assessment of performance, evidence is presented showing that results vary in different context.'''
63
+
64
+ Formatted_Prompt_OBJECTIVE = f"###Human: {Sys_OBJECTIVE}\nThe context is: {Prompt}\n###Assistant: "
65
+
66
+ Formatted_Prompt_SUBJECTIVE = f"###Human: {Sys_SUBJECTIVE}\nThe context is: {Prompt}\n###Assistant: "
67
+
68
+ - stream(Formatted_Prompt_OBJECTIVE)
69
+ - infer_pipeline(Formatted_Prompt_OBJECTIVE)
70
+ - infer_pipeline(Formatted_Prompt_SUBJECTIVE)
71
+ ```