SaffalPoosh's picture
Upload folder using huggingface_hub
e5765b1
raw
history blame
5.52 kB
import argparse
from pathlib import Path
from typing import Dict, List, Optional, Any
import albumentations as albu
import cv2
import numpy as np
import torch
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import yaml
from albumentations.core.serialization import from_dict
from iglovikov_helper_functions.config_parsing.utils import object_from_dict
from iglovikov_helper_functions.dl.pytorch.utils import state_dict_from_disk, tensor_from_rgb_image
from iglovikov_helper_functions.utils.image_utils import load_rgb, pad_to_size, unpad_from_size
from torch.utils.data import Dataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
def get_args():
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg("-i", "--input_path", type=Path, help="Path with images.", required=True)
arg("-c", "--config_path", type=Path, help="Path to config.", required=True)
arg("-o", "--output_path", type=Path, help="Path to save masks.", required=True)
arg("-b", "--batch_size", type=int, help="batch_size", default=1)
arg("-j", "--num_workers", type=int, help="num_workers", default=12)
arg("-w", "--weight_path", type=str, help="Path to weights.", required=True)
arg("--world_size", default=-1, type=int, help="number of nodes for distributed training")
arg("--local_rank", default=-1, type=int, help="node rank for distributed training")
arg("--fp16", action="store_true", help="Use fp6")
return parser.parse_args()
class InferenceDataset(Dataset):
def __init__(self, file_paths: List[Path], transform: albu.Compose) -> None:
self.file_paths = file_paths
self.transform = transform
def __len__(self) -> int:
return len(self.file_paths)
def __getitem__(self, idx: int) -> Optional[Dict[str, Any]]:
image_path = self.file_paths[idx]
image = load_rgb(image_path)
height, width = image.shape[:2]
image = self.transform(image=image)["image"]
pad_dict = pad_to_size((max(image.shape[:2]), max(image.shape[:2])), image)
return {
"torched_image": tensor_from_rgb_image(pad_dict["image"]),
"image_path": str(image_path),
"pads": pad_dict["pads"],
"original_width": width,
"original_height": height,
}
def main():
args = get_args()
torch.distributed.init_process_group(backend="nccl")
with open(args.config_path) as f:
hparams = yaml.load(f, Loader=yaml.SafeLoader)
hparams.update(
{
"local_rank": args.local_rank,
"fp16": args.fp16,
}
)
output_mask_path = args.output_path
output_mask_path.mkdir(parents=True, exist_ok=True)
hparams["output_mask_path"] = output_mask_path
device = torch.device("cuda", args.local_rank)
model = object_from_dict(hparams["model"])
model = model.to(device)
if args.fp16:
model = model.half()
corrections: Dict[str, str] = {"model.": ""}
state_dict = state_dict_from_disk(file_path=args.weight_path, rename_in_layers=corrections)
model.load_state_dict(state_dict)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank
)
file_paths = []
for regexp in ["*.jpg", "*.png", "*.jpeg", "*.JPG"]:
file_paths += sorted([x for x in tqdm(args.input_path.rglob(regexp))])
# Filter file paths for which we already have predictions
file_paths = [x for x in file_paths if not (args.output_path / x.parent.name / f"{x.stem}.png").exists()]
dataset = InferenceDataset(file_paths, transform=from_dict(hparams["test_aug"]))
sampler = DistributedSampler(dataset, shuffle=False)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
shuffle=False,
drop_last=False,
sampler=sampler,
)
predict(dataloader, model, hparams, device)
def predict(dataloader, model, hparams, device):
model.eval()
if hparams["local_rank"] == 0:
loader = tqdm(dataloader)
else:
loader = dataloader
with torch.no_grad():
for batch in loader:
torched_images = batch["torched_image"] # images that are rescaled and padded
if hparams["fp16"]:
torched_images = torched_images.half()
image_paths = batch["image_path"]
pads = batch["pads"]
heights = batch["original_height"]
widths = batch["original_width"]
batch_size = torched_images.shape[0]
predictions = model(torched_images.to(device))
for batch_id in range(batch_size):
file_id = Path(image_paths[batch_id]).stem
folder_name = Path(image_paths[batch_id]).parent.name
mask = (predictions[batch_id][0].cpu().numpy() > 0).astype(np.uint8) * 255
mask = unpad_from_size(pads, image=mask)["image"]
mask = cv2.resize(
mask, (widths[batch_id].item(), heights[batch_id].item()), interpolation=cv2.INTER_NEAREST
)
(hparams["output_mask_path"] / folder_name).mkdir(exist_ok=True, parents=True)
cv2.imwrite(str(hparams["output_mask_path"] / folder_name / f"{file_id}.png"), mask)
if __name__ == "__main__":
main()