Saed2023 commited on
Commit
4e605a2
·
1 Parent(s): bb9249c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: layoutlmv3-finetuned-UsingAlgoDataset_427Images
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # layoutlmv3-finetuned-UsingAlgoDataset_427Images
19
+
20
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0022
23
+ - Precision: 0.9892
24
+ - Recall: 0.9880
25
+ - F1: 0.9886
26
+ - Accuracy: 0.9997
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - training_steps: 500
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 0.62 | 50 | 0.0349 | 0.7521 | 0.6300 | 0.6857 | 0.9926 |
58
+ | No log | 1.25 | 100 | 0.0080 | 0.9538 | 0.9405 | 0.9471 | 0.9985 |
59
+ | No log | 1.88 | 150 | 0.0044 | 0.9750 | 0.9723 | 0.9736 | 0.9992 |
60
+ | No log | 2.5 | 200 | 0.0032 | 0.9834 | 0.9827 | 0.9831 | 0.9995 |
61
+ | No log | 3.12 | 250 | 0.0037 | 0.9710 | 0.9784 | 0.9747 | 0.9992 |
62
+ | No log | 3.75 | 300 | 0.0026 | 0.9861 | 0.9852 | 0.9857 | 0.9996 |
63
+ | No log | 4.38 | 350 | 0.0023 | 0.9880 | 0.9871 | 0.9875 | 0.9996 |
64
+ | No log | 5.0 | 400 | 0.0022 | 0.9883 | 0.9871 | 0.9877 | 0.9997 |
65
+ | No log | 5.62 | 450 | 0.0022 | 0.9892 | 0.9880 | 0.9886 | 0.9997 |
66
+ | 0.029 | 6.25 | 500 | 0.0022 | 0.9892 | 0.9880 | 0.9886 | 0.9997 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.28.0
72
+ - Pytorch 2.0.1+cu118
73
+ - Datasets 2.13.1
74
+ - Tokenizers 0.13.3