update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: layoutlmv3-finetuned-UsingAlgoDataset_427Images
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# layoutlmv3-finetuned-UsingAlgoDataset_427Images
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0022
|
23 |
+
- Precision: 0.9892
|
24 |
+
- Recall: 0.9880
|
25 |
+
- F1: 0.9886
|
26 |
+
- Accuracy: 0.9997
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 4
|
47 |
+
- eval_batch_size: 4
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- training_steps: 500
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 0.62 | 50 | 0.0349 | 0.7521 | 0.6300 | 0.6857 | 0.9926 |
|
58 |
+
| No log | 1.25 | 100 | 0.0080 | 0.9538 | 0.9405 | 0.9471 | 0.9985 |
|
59 |
+
| No log | 1.88 | 150 | 0.0044 | 0.9750 | 0.9723 | 0.9736 | 0.9992 |
|
60 |
+
| No log | 2.5 | 200 | 0.0032 | 0.9834 | 0.9827 | 0.9831 | 0.9995 |
|
61 |
+
| No log | 3.12 | 250 | 0.0037 | 0.9710 | 0.9784 | 0.9747 | 0.9992 |
|
62 |
+
| No log | 3.75 | 300 | 0.0026 | 0.9861 | 0.9852 | 0.9857 | 0.9996 |
|
63 |
+
| No log | 4.38 | 350 | 0.0023 | 0.9880 | 0.9871 | 0.9875 | 0.9996 |
|
64 |
+
| No log | 5.0 | 400 | 0.0022 | 0.9883 | 0.9871 | 0.9877 | 0.9997 |
|
65 |
+
| No log | 5.62 | 450 | 0.0022 | 0.9892 | 0.9880 | 0.9886 | 0.9997 |
|
66 |
+
| 0.029 | 6.25 | 500 | 0.0022 | 0.9892 | 0.9880 | 0.9886 | 0.9997 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.28.0
|
72 |
+
- Pytorch 2.0.1+cu118
|
73 |
+
- Datasets 2.13.1
|
74 |
+
- Tokenizers 0.13.3
|