SabaPivot commited on
Commit
770c3c3
·
verified ·
1 Parent(s): 8128128

Initial model upload

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: EleutherAI/polyglot-ko-5.8b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "EleutherAI/polyglot-ko-5.8b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90dd45e18896f1b304a1c3bd6e48f015d5b33f349994a6af15a50aa3a577c8b2
3
+ size 117472040
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e034b573ef84ca1514a0834f963a8f709d20fd0eff7acfe4fc37cb74c87f471
3
+ size 59904186
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24374c455aa14b2cb1b9b7f827902dd9bb6d7240c93e68ae948cf91db1475ef2
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df43fa6c5ccd7f00b3c6ddfc4ef28362a38f2ce41979cd7ead9e9094d1f91e88
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.7638190954773867,
5
+ "eval_steps": 50,
6
+ "global_step": 550,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.05025125628140704,
13
+ "grad_norm": 2.7331879138946533,
14
+ "learning_rate": 0.00011111111111111112,
15
+ "loss": 4.5492,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.10050251256281408,
20
+ "grad_norm": 1.3071860074996948,
21
+ "learning_rate": 0.0001993091537132988,
22
+ "loss": 2.2252,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.1507537688442211,
27
+ "grad_norm": 0.8406941294670105,
28
+ "learning_rate": 0.00019585492227979276,
29
+ "loss": 1.2383,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.20100502512562815,
34
+ "grad_norm": 0.6023192405700684,
35
+ "learning_rate": 0.0001924006908462867,
36
+ "loss": 0.9934,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.25125628140703515,
41
+ "grad_norm": 0.5064266920089722,
42
+ "learning_rate": 0.00018894645941278066,
43
+ "loss": 0.9557,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.25125628140703515,
48
+ "eval_loss": 0.8025498390197754,
49
+ "eval_runtime": 1.3219,
50
+ "eval_samples_per_second": 3.782,
51
+ "eval_steps_per_second": 2.269,
52
+ "step": 50
53
+ },
54
+ {
55
+ "epoch": 0.3015075376884422,
56
+ "grad_norm": 0.43176260590553284,
57
+ "learning_rate": 0.0001854922279792746,
58
+ "loss": 0.9039,
59
+ "step": 60
60
+ },
61
+ {
62
+ "epoch": 0.35175879396984927,
63
+ "grad_norm": 0.4681567847728729,
64
+ "learning_rate": 0.0001820379965457686,
65
+ "loss": 0.9566,
66
+ "step": 70
67
+ },
68
+ {
69
+ "epoch": 0.4020100502512563,
70
+ "grad_norm": 0.43966764211654663,
71
+ "learning_rate": 0.00017858376511226254,
72
+ "loss": 0.9222,
73
+ "step": 80
74
+ },
75
+ {
76
+ "epoch": 0.45226130653266333,
77
+ "grad_norm": 0.4129442274570465,
78
+ "learning_rate": 0.00017512953367875648,
79
+ "loss": 0.9164,
80
+ "step": 90
81
+ },
82
+ {
83
+ "epoch": 0.5025125628140703,
84
+ "grad_norm": 0.41527071595191956,
85
+ "learning_rate": 0.00017167530224525043,
86
+ "loss": 0.9552,
87
+ "step": 100
88
+ },
89
+ {
90
+ "epoch": 0.5025125628140703,
91
+ "eval_loss": 0.7878023386001587,
92
+ "eval_runtime": 1.3214,
93
+ "eval_samples_per_second": 3.784,
94
+ "eval_steps_per_second": 2.27,
95
+ "step": 100
96
+ },
97
+ {
98
+ "epoch": 0.5527638190954773,
99
+ "grad_norm": 0.4895398020744324,
100
+ "learning_rate": 0.00016822107081174438,
101
+ "loss": 0.8344,
102
+ "step": 110
103
+ },
104
+ {
105
+ "epoch": 0.6030150753768844,
106
+ "grad_norm": 0.45471400022506714,
107
+ "learning_rate": 0.00016476683937823836,
108
+ "loss": 0.8917,
109
+ "step": 120
110
+ },
111
+ {
112
+ "epoch": 0.6532663316582915,
113
+ "grad_norm": 0.5393139719963074,
114
+ "learning_rate": 0.0001613126079447323,
115
+ "loss": 0.9032,
116
+ "step": 130
117
+ },
118
+ {
119
+ "epoch": 0.7035175879396985,
120
+ "grad_norm": 0.5403347611427307,
121
+ "learning_rate": 0.00015785837651122625,
122
+ "loss": 0.8733,
123
+ "step": 140
124
+ },
125
+ {
126
+ "epoch": 0.7537688442211056,
127
+ "grad_norm": 0.43077245354652405,
128
+ "learning_rate": 0.0001544041450777202,
129
+ "loss": 0.8556,
130
+ "step": 150
131
+ },
132
+ {
133
+ "epoch": 0.7537688442211056,
134
+ "eval_loss": 0.8010480999946594,
135
+ "eval_runtime": 1.3206,
136
+ "eval_samples_per_second": 3.786,
137
+ "eval_steps_per_second": 2.272,
138
+ "step": 150
139
+ },
140
+ {
141
+ "epoch": 0.8040201005025126,
142
+ "grad_norm": 0.5524880886077881,
143
+ "learning_rate": 0.00015094991364421418,
144
+ "loss": 0.8682,
145
+ "step": 160
146
+ },
147
+ {
148
+ "epoch": 0.8542713567839196,
149
+ "grad_norm": 0.4089386463165283,
150
+ "learning_rate": 0.00014749568221070813,
151
+ "loss": 0.834,
152
+ "step": 170
153
+ },
154
+ {
155
+ "epoch": 0.9045226130653267,
156
+ "grad_norm": 0.4427401125431061,
157
+ "learning_rate": 0.00014404145077720208,
158
+ "loss": 0.8372,
159
+ "step": 180
160
+ },
161
+ {
162
+ "epoch": 0.9547738693467337,
163
+ "grad_norm": 0.47620806097984314,
164
+ "learning_rate": 0.00014058721934369603,
165
+ "loss": 0.8617,
166
+ "step": 190
167
+ },
168
+ {
169
+ "epoch": 1.0050251256281406,
170
+ "grad_norm": 0.422519326210022,
171
+ "learning_rate": 0.00013713298791018997,
172
+ "loss": 0.8209,
173
+ "step": 200
174
+ },
175
+ {
176
+ "epoch": 1.0050251256281406,
177
+ "eval_loss": 0.7980930209159851,
178
+ "eval_runtime": 1.3228,
179
+ "eval_samples_per_second": 3.78,
180
+ "eval_steps_per_second": 2.268,
181
+ "step": 200
182
+ },
183
+ {
184
+ "epoch": 1.0552763819095476,
185
+ "grad_norm": 0.5760028958320618,
186
+ "learning_rate": 0.00013367875647668395,
187
+ "loss": 0.7108,
188
+ "step": 210
189
+ },
190
+ {
191
+ "epoch": 1.1055276381909547,
192
+ "grad_norm": 0.5941806435585022,
193
+ "learning_rate": 0.0001302245250431779,
194
+ "loss": 0.7297,
195
+ "step": 220
196
+ },
197
+ {
198
+ "epoch": 1.1557788944723617,
199
+ "grad_norm": 0.5836068987846375,
200
+ "learning_rate": 0.00012677029360967185,
201
+ "loss": 0.7228,
202
+ "step": 230
203
+ },
204
+ {
205
+ "epoch": 1.2060301507537687,
206
+ "grad_norm": 0.6482324600219727,
207
+ "learning_rate": 0.0001233160621761658,
208
+ "loss": 0.7608,
209
+ "step": 240
210
+ },
211
+ {
212
+ "epoch": 1.2562814070351758,
213
+ "grad_norm": 0.6730554699897766,
214
+ "learning_rate": 0.00011986183074265976,
215
+ "loss": 0.7098,
216
+ "step": 250
217
+ },
218
+ {
219
+ "epoch": 1.2562814070351758,
220
+ "eval_loss": 0.7918744683265686,
221
+ "eval_runtime": 1.3223,
222
+ "eval_samples_per_second": 3.781,
223
+ "eval_steps_per_second": 2.269,
224
+ "step": 250
225
+ },
226
+ {
227
+ "epoch": 1.3065326633165828,
228
+ "grad_norm": 0.6630657315254211,
229
+ "learning_rate": 0.00011640759930915372,
230
+ "loss": 0.7209,
231
+ "step": 260
232
+ },
233
+ {
234
+ "epoch": 1.3567839195979898,
235
+ "grad_norm": 0.6970928907394409,
236
+ "learning_rate": 0.00011295336787564767,
237
+ "loss": 0.6857,
238
+ "step": 270
239
+ },
240
+ {
241
+ "epoch": 1.4070351758793969,
242
+ "grad_norm": 0.6193214058876038,
243
+ "learning_rate": 0.00010949913644214163,
244
+ "loss": 0.7362,
245
+ "step": 280
246
+ },
247
+ {
248
+ "epoch": 1.457286432160804,
249
+ "grad_norm": 0.662550687789917,
250
+ "learning_rate": 0.00010604490500863558,
251
+ "loss": 0.7165,
252
+ "step": 290
253
+ },
254
+ {
255
+ "epoch": 1.507537688442211,
256
+ "grad_norm": 0.6738688349723816,
257
+ "learning_rate": 0.00010259067357512954,
258
+ "loss": 0.6846,
259
+ "step": 300
260
+ },
261
+ {
262
+ "epoch": 1.507537688442211,
263
+ "eval_loss": 0.7742435336112976,
264
+ "eval_runtime": 1.3222,
265
+ "eval_samples_per_second": 3.782,
266
+ "eval_steps_per_second": 2.269,
267
+ "step": 300
268
+ },
269
+ {
270
+ "epoch": 1.557788944723618,
271
+ "grad_norm": 0.7248693704605103,
272
+ "learning_rate": 9.913644214162349e-05,
273
+ "loss": 0.7071,
274
+ "step": 310
275
+ },
276
+ {
277
+ "epoch": 1.608040201005025,
278
+ "grad_norm": 0.6078261733055115,
279
+ "learning_rate": 9.568221070811745e-05,
280
+ "loss": 0.6842,
281
+ "step": 320
282
+ },
283
+ {
284
+ "epoch": 1.658291457286432,
285
+ "grad_norm": 0.6325313448905945,
286
+ "learning_rate": 9.22279792746114e-05,
287
+ "loss": 0.7021,
288
+ "step": 330
289
+ },
290
+ {
291
+ "epoch": 1.708542713567839,
292
+ "grad_norm": 0.7060580849647522,
293
+ "learning_rate": 8.877374784110537e-05,
294
+ "loss": 0.7202,
295
+ "step": 340
296
+ },
297
+ {
298
+ "epoch": 1.758793969849246,
299
+ "grad_norm": 0.7426964044570923,
300
+ "learning_rate": 8.531951640759931e-05,
301
+ "loss": 0.6804,
302
+ "step": 350
303
+ },
304
+ {
305
+ "epoch": 1.758793969849246,
306
+ "eval_loss": 0.7866752743721008,
307
+ "eval_runtime": 1.322,
308
+ "eval_samples_per_second": 3.782,
309
+ "eval_steps_per_second": 2.269,
310
+ "step": 350
311
+ },
312
+ {
313
+ "epoch": 1.809045226130653,
314
+ "grad_norm": 0.7517825365066528,
315
+ "learning_rate": 8.186528497409328e-05,
316
+ "loss": 0.7352,
317
+ "step": 360
318
+ },
319
+ {
320
+ "epoch": 1.8592964824120601,
321
+ "grad_norm": 0.6947513818740845,
322
+ "learning_rate": 7.841105354058723e-05,
323
+ "loss": 0.7074,
324
+ "step": 370
325
+ },
326
+ {
327
+ "epoch": 1.9095477386934674,
328
+ "grad_norm": 0.7039978504180908,
329
+ "learning_rate": 7.495682210708119e-05,
330
+ "loss": 0.6876,
331
+ "step": 380
332
+ },
333
+ {
334
+ "epoch": 1.9597989949748744,
335
+ "grad_norm": 0.7531492114067078,
336
+ "learning_rate": 7.150259067357514e-05,
337
+ "loss": 0.704,
338
+ "step": 390
339
+ },
340
+ {
341
+ "epoch": 2.0100502512562812,
342
+ "grad_norm": 0.6723101735115051,
343
+ "learning_rate": 6.80483592400691e-05,
344
+ "loss": 0.7019,
345
+ "step": 400
346
+ },
347
+ {
348
+ "epoch": 2.0100502512562812,
349
+ "eval_loss": 0.7837786078453064,
350
+ "eval_runtime": 1.323,
351
+ "eval_samples_per_second": 3.779,
352
+ "eval_steps_per_second": 2.268,
353
+ "step": 400
354
+ },
355
+ {
356
+ "epoch": 2.0603015075376883,
357
+ "grad_norm": 0.8852601647377014,
358
+ "learning_rate": 6.459412780656305e-05,
359
+ "loss": 0.5876,
360
+ "step": 410
361
+ },
362
+ {
363
+ "epoch": 2.1105527638190953,
364
+ "grad_norm": 0.8251053690910339,
365
+ "learning_rate": 6.1139896373057e-05,
366
+ "loss": 0.5425,
367
+ "step": 420
368
+ },
369
+ {
370
+ "epoch": 2.1608040201005023,
371
+ "grad_norm": 0.8552199602127075,
372
+ "learning_rate": 5.768566493955095e-05,
373
+ "loss": 0.5387,
374
+ "step": 430
375
+ },
376
+ {
377
+ "epoch": 2.2110552763819094,
378
+ "grad_norm": 0.9771417379379272,
379
+ "learning_rate": 5.423143350604491e-05,
380
+ "loss": 0.534,
381
+ "step": 440
382
+ },
383
+ {
384
+ "epoch": 2.2613065326633164,
385
+ "grad_norm": 1.037300705909729,
386
+ "learning_rate": 5.077720207253886e-05,
387
+ "loss": 0.5477,
388
+ "step": 450
389
+ },
390
+ {
391
+ "epoch": 2.2613065326633164,
392
+ "eval_loss": 0.8492676615715027,
393
+ "eval_runtime": 1.3237,
394
+ "eval_samples_per_second": 3.777,
395
+ "eval_steps_per_second": 2.266,
396
+ "step": 450
397
+ },
398
+ {
399
+ "epoch": 2.3115577889447234,
400
+ "grad_norm": 0.9188404679298401,
401
+ "learning_rate": 4.732297063903282e-05,
402
+ "loss": 0.5167,
403
+ "step": 460
404
+ },
405
+ {
406
+ "epoch": 2.3618090452261304,
407
+ "grad_norm": 0.9390994906425476,
408
+ "learning_rate": 4.3868739205526774e-05,
409
+ "loss": 0.5185,
410
+ "step": 470
411
+ },
412
+ {
413
+ "epoch": 2.4120603015075375,
414
+ "grad_norm": 0.9584892392158508,
415
+ "learning_rate": 4.041450777202073e-05,
416
+ "loss": 0.5778,
417
+ "step": 480
418
+ },
419
+ {
420
+ "epoch": 2.4623115577889445,
421
+ "grad_norm": 0.9372660517692566,
422
+ "learning_rate": 3.6960276338514685e-05,
423
+ "loss": 0.5467,
424
+ "step": 490
425
+ },
426
+ {
427
+ "epoch": 2.5125628140703515,
428
+ "grad_norm": 0.9411101937294006,
429
+ "learning_rate": 3.350604490500864e-05,
430
+ "loss": 0.5454,
431
+ "step": 500
432
+ },
433
+ {
434
+ "epoch": 2.5125628140703515,
435
+ "eval_loss": 0.856406033039093,
436
+ "eval_runtime": 1.324,
437
+ "eval_samples_per_second": 3.776,
438
+ "eval_steps_per_second": 2.266,
439
+ "step": 500
440
+ },
441
+ {
442
+ "epoch": 2.5628140703517586,
443
+ "grad_norm": 0.9394413828849792,
444
+ "learning_rate": 3.0051813471502592e-05,
445
+ "loss": 0.5746,
446
+ "step": 510
447
+ },
448
+ {
449
+ "epoch": 2.6130653266331656,
450
+ "grad_norm": 0.9682734608650208,
451
+ "learning_rate": 2.6597582037996548e-05,
452
+ "loss": 0.5844,
453
+ "step": 520
454
+ },
455
+ {
456
+ "epoch": 2.6633165829145726,
457
+ "grad_norm": 0.9798169136047363,
458
+ "learning_rate": 2.3143350604490503e-05,
459
+ "loss": 0.5552,
460
+ "step": 530
461
+ },
462
+ {
463
+ "epoch": 2.7135678391959797,
464
+ "grad_norm": 1.0241056680679321,
465
+ "learning_rate": 1.968911917098446e-05,
466
+ "loss": 0.54,
467
+ "step": 540
468
+ },
469
+ {
470
+ "epoch": 2.7638190954773867,
471
+ "grad_norm": 0.9591020345687866,
472
+ "learning_rate": 1.6234887737478414e-05,
473
+ "loss": 0.5317,
474
+ "step": 550
475
+ },
476
+ {
477
+ "epoch": 2.7638190954773867,
478
+ "eval_loss": 0.8474575877189636,
479
+ "eval_runtime": 1.3229,
480
+ "eval_samples_per_second": 3.78,
481
+ "eval_steps_per_second": 2.268,
482
+ "step": 550
483
+ }
484
+ ],
485
+ "logging_steps": 10,
486
+ "max_steps": 597,
487
+ "num_input_tokens_seen": 0,
488
+ "num_train_epochs": 3,
489
+ "save_steps": 50,
490
+ "stateful_callbacks": {
491
+ "TrainerControl": {
492
+ "args": {
493
+ "should_epoch_stop": false,
494
+ "should_evaluate": false,
495
+ "should_log": false,
496
+ "should_save": true,
497
+ "should_training_stop": false
498
+ },
499
+ "attributes": {}
500
+ }
501
+ },
502
+ "total_flos": 7.8278647873536e+17,
503
+ "train_batch_size": 2,
504
+ "trial_name": null,
505
+ "trial_params": null
506
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95a6f8f92de885e01ca3f9d97c810ef84d0ab76531137b0e7efd3a50929d39b2
3
+ size 5176