|
from typing import Callable, Dict, List, Union |
|
from dataclasses import asdict, dataclass, field |
|
|
|
|
|
import re |
|
from dataclasses import replace |
|
from typing import Dict |
|
_whitespace_re = re.compile(r"\s+") |
|
|
|
from dataclasses import dataclass, field |
|
from typing import List |
|
|
|
|
|
|
|
|
|
@dataclass |
|
class CharactersConfig(): |
|
|
|
characters_class: str = None |
|
|
|
|
|
vocab_dict: Dict = None |
|
|
|
|
|
pad: str = None |
|
eos: str = None |
|
bos: str = None |
|
blank: str = None |
|
characters: str = None |
|
punctuations: str = None |
|
phonemes: str = None |
|
is_unique: bool = True |
|
is_sorted: bool = True |
|
|
|
|
|
@dataclass |
|
class BaseTTSConfig(): |
|
|
|
|
|
|
|
use_phonemes: bool = False |
|
phonemizer: str = None |
|
phoneme_language: str = None |
|
compute_input_seq_cache: bool = False |
|
text_cleaner: str = None |
|
enable_eos_bos_chars: bool = False |
|
test_sentences_file: str = "" |
|
phoneme_cache_path: str = None |
|
|
|
characters: CharactersConfig = None |
|
add_blank: bool = False |
|
|
|
batch_group_size: int = 0 |
|
loss_masking: bool = None |
|
|
|
min_audio_len: int = 1 |
|
max_audio_len: int = float("inf") |
|
min_text_len: int = 1 |
|
max_text_len: int = float("inf") |
|
compute_f0: bool = False |
|
compute_energy: bool = False |
|
compute_linear_spec: bool = False |
|
precompute_num_workers: int = 0 |
|
use_noise_augment: bool = False |
|
start_by_longest: bool = False |
|
shuffle: bool = False |
|
drop_last: bool = False |
|
|
|
datasets: str = None |
|
|
|
optimizer: str = "radam" |
|
optimizer_params: dict = None |
|
|
|
lr_scheduler: str = None |
|
lr_scheduler_params: dict = field(default_factory=lambda: {}) |
|
|
|
test_sentences: List[str] = field(default_factory=lambda: []) |
|
|
|
eval_split_max_size: int = None |
|
eval_split_size: float = 0.01 |
|
|
|
use_speaker_weighted_sampler: bool = False |
|
speaker_weighted_sampler_alpha: float = 1.0 |
|
use_language_weighted_sampler: bool = False |
|
language_weighted_sampler_alpha: float = 1.0 |
|
use_length_weighted_sampler: bool = False |
|
length_weighted_sampler_alpha: float = 1.0 |
|
|
|
|
|
@dataclass |
|
class VitsAudioConfig(): |
|
fft_size: int = 1024 |
|
sample_rate: int = 22050 |
|
win_length: int = 1024 |
|
hop_length: int = 256 |
|
num_mels: int = 80 |
|
mel_fmin: int = 0 |
|
mel_fmax: int = None |
|
|
|
@dataclass |
|
class VitsArgs(): |
|
num_chars: int = 100 |
|
out_channels: int = 513 |
|
spec_segment_size: int = 32 |
|
hidden_channels: int = 192 |
|
hidden_channels_ffn_text_encoder: int = 768 |
|
num_heads_text_encoder: int = 2 |
|
num_layers_text_encoder: int = 6 |
|
kernel_size_text_encoder: int = 3 |
|
dropout_p_text_encoder: float = 0.1 |
|
dropout_p_duration_predictor: float = 0.5 |
|
kernel_size_posterior_encoder: int = 5 |
|
dilation_rate_posterior_encoder: int = 1 |
|
num_layers_posterior_encoder: int = 16 |
|
kernel_size_flow: int = 5 |
|
dilation_rate_flow: int = 1 |
|
num_layers_flow: int = 4 |
|
resblock_type_decoder: str = "1" |
|
resblock_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [3, 7, 11]) |
|
resblock_dilation_sizes_decoder: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) |
|
upsample_rates_decoder: List[int] = field(default_factory=lambda: [8, 8, 2, 2]) |
|
upsample_initial_channel_decoder: int = 512 |
|
upsample_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [16, 16, 4, 4]) |
|
periods_multi_period_discriminator: List[int] = field(default_factory=lambda: [2, 3, 5, 7, 11]) |
|
use_sdp: bool = True |
|
noise_scale: float = 1.0 |
|
inference_noise_scale: float = 0.667 |
|
length_scale: float = 1 |
|
noise_scale_dp: float = 1.0 |
|
inference_noise_scale_dp: float = 1.0 |
|
max_inference_len: int = None |
|
init_discriminator: bool = True |
|
use_spectral_norm_disriminator: bool = False |
|
use_speaker_embedding: bool = False |
|
num_speakers: int = 0 |
|
speakers_file: str = None |
|
d_vector_file: List[str] = None |
|
speaker_embedding_channels: int = 256 |
|
use_d_vector_file: bool = False |
|
d_vector_dim: int = 0 |
|
detach_dp_input: bool = True |
|
use_language_embedding: bool = False |
|
embedded_language_dim: int = 4 |
|
num_languages: int = 0 |
|
language_ids_file: str = None |
|
use_speaker_encoder_as_loss: bool = False |
|
speaker_encoder_config_path: str = "" |
|
speaker_encoder_model_path: str = "" |
|
condition_dp_on_speaker: bool = True |
|
freeze_encoder: bool = False |
|
freeze_DP: bool = False |
|
freeze_PE: bool = False |
|
freeze_flow_decoder: bool = False |
|
freeze_waveform_decoder: bool = False |
|
encoder_sample_rate: int = None |
|
interpolate_z: bool = True |
|
reinit_DP: bool = False |
|
reinit_text_encoder: bool = False |
|
@dataclass |
|
class VitsConfig(BaseTTSConfig): |
|
|
|
model: str = "vits" |
|
|
|
model_args: VitsArgs = field(default_factory=VitsArgs) |
|
audio: VitsAudioConfig = field(default_factory=VitsAudioConfig) |
|
|
|
|
|
grad_clip: List[float] = field(default_factory=lambda: [1000, 1000]) |
|
lr_gen: float = 0.0002 |
|
lr_disc: float = 0.0002 |
|
lr_scheduler_gen: str = "ExponentialLR" |
|
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) |
|
lr_scheduler_disc: str = "ExponentialLR" |
|
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) |
|
scheduler_after_epoch: bool = True |
|
optimizer: str = "AdamW" |
|
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01}) |
|
|
|
|
|
kl_loss_alpha: float = 1.0 |
|
disc_loss_alpha: float = 1.0 |
|
gen_loss_alpha: float = 1.0 |
|
feat_loss_alpha: float = 1.0 |
|
mel_loss_alpha: float = 45.0 |
|
dur_loss_alpha: float = 1.0 |
|
speaker_encoder_loss_alpha: float = 1.0 |
|
|
|
|
|
return_wav: bool = True |
|
compute_linear_spec: bool = True |
|
|
|
|
|
use_weighted_sampler: bool = False |
|
weighted_sampler_attrs: dict = field(default_factory=lambda: {}) |
|
weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) |
|
|
|
|
|
r: int = 1 |
|
add_blank: bool = True |
|
|
|
|
|
test_sentences: List[List] = field( |
|
default_factory=lambda: [ |
|
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."], |
|
["Be a voice, not an echo."], |
|
["I'm sorry Dave. I'm afraid I can't do that."], |
|
["This cake is great. It's so delicious and moist."], |
|
["Prior to November 22, 1963."], |
|
] |
|
) |
|
|
|
|
|
|
|
num_speakers: int = 0 |
|
use_speaker_embedding: bool = False |
|
speakers_file: str = None |
|
speaker_embedding_channels: int = 256 |
|
language_ids_file: str = None |
|
use_language_embedding: bool = False |
|
|
|
|
|
use_d_vector_file: bool = False |
|
d_vector_file: List[str] = None |
|
d_vector_dim: int = None |
|
|
|
def __post_init__(self): |
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_symbols(): |
|
return { |
|
"pad": _pad, |
|
"eos": _eos, |
|
"bos": _bos, |
|
"characters": _characters, |
|
"punctuations": _punctuations, |
|
"phonemes": _phonemes, |
|
} |
|
|
|
|
|
|
|
_pad = "<PAD>" |
|
_eos = "<EOS>" |
|
_bos = "<BOS>" |
|
_blank = "<BLNK>" |
|
_characters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" |
|
_punctuations = "!'(),-.:;? " |
|
|
|
|
|
|
|
|
|
_vowels = "iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻ" |
|
_non_pulmonic_consonants = "ʘɓǀɗǃʄǂɠǁʛ" |
|
_pulmonic_consonants = "pbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟ" |
|
_suprasegmentals = "ˈˌːˑ" |
|
_other_symbols = "ʍwɥʜʢʡɕʑɺɧʲ" |
|
_diacrilics = "ɚ˞ɫ" |
|
_phonemes = _vowels + _non_pulmonic_consonants + _pulmonic_consonants + _suprasegmentals + _other_symbols + _diacrilics |
|
|
|
|
|
class BaseVocabulary: |
|
"""Base Vocabulary class. |
|
|
|
This class only needs a vocabulary dictionary without specifying the characters. |
|
|
|
Args: |
|
vocab (Dict): A dictionary of characters and their corresponding indices. |
|
""" |
|
|
|
def __init__(self, vocab: Dict, pad: str = None, blank: str = None, bos: str = None, eos: str = None): |
|
self.vocab = vocab |
|
self.pad = pad |
|
self.blank = blank |
|
self.bos = bos |
|
self.eos = eos |
|
|
|
@property |
|
def pad_id(self) -> int: |
|
"""Return the index of the padding character. If the padding character is not specified, return the length |
|
of the vocabulary.""" |
|
return self.char_to_id(self.pad) if self.pad else len(self.vocab) |
|
|
|
@property |
|
def blank_id(self) -> int: |
|
"""Return the index of the blank character. If the blank character is not specified, return the length of |
|
the vocabulary.""" |
|
return self.char_to_id(self.blank) if self.blank else len(self.vocab) |
|
|
|
@property |
|
def bos_id(self) -> int: |
|
"""Return the index of the bos character. If the bos character is not specified, return the length of the |
|
vocabulary.""" |
|
return self.char_to_id(self.bos) if self.bos else len(self.vocab) |
|
|
|
@property |
|
def eos_id(self) -> int: |
|
"""Return the index of the eos character. If the eos character is not specified, return the length of the |
|
vocabulary.""" |
|
return self.char_to_id(self.eos) if self.eos else len(self.vocab) |
|
|
|
@property |
|
def vocab(self): |
|
"""Return the vocabulary dictionary.""" |
|
return self._vocab |
|
|
|
@vocab.setter |
|
def vocab(self, vocab): |
|
"""Set the vocabulary dictionary and character mapping dictionaries.""" |
|
self._vocab, self._char_to_id, self._id_to_char = None, None, None |
|
if vocab is not None: |
|
self._vocab = vocab |
|
self._char_to_id = {char: idx for idx, char in enumerate(self._vocab)} |
|
self._id_to_char = { |
|
idx: char for idx, char in enumerate(self._vocab) |
|
} |
|
|
|
@staticmethod |
|
def init_from_config(config, **kwargs): |
|
"""Initialize from the given config.""" |
|
if config.characters is not None and "vocab_dict" in config.characters and config.characters.vocab_dict: |
|
return ( |
|
BaseVocabulary( |
|
config.characters.vocab_dict, |
|
config.characters.pad, |
|
config.characters.blank, |
|
config.characters.bos, |
|
config.characters.eos, |
|
), |
|
config, |
|
) |
|
return BaseVocabulary(**kwargs), config |
|
|
|
def to_config(self): |
|
return CharactersConfig( |
|
vocab_dict=self._vocab, |
|
pad=self.pad, |
|
eos=self.eos, |
|
bos=self.bos, |
|
blank=self.blank, |
|
is_unique=False, |
|
is_sorted=False, |
|
) |
|
|
|
@property |
|
def num_chars(self): |
|
"""Return number of tokens in the vocabulary.""" |
|
return len(self._vocab) |
|
|
|
def char_to_id(self, char: str) -> int: |
|
"""Map a character to an token ID.""" |
|
try: |
|
return self._char_to_id[char] |
|
except KeyError as e: |
|
raise KeyError(f" [!] {repr(char)} is not in the vocabulary.") from e |
|
|
|
def id_to_char(self, idx: int) -> str: |
|
"""Map an token ID to a character.""" |
|
return self._id_to_char[idx] |
|
|
|
|
|
class BaseCharacters: |
|
|
|
|
|
def __init__( |
|
self, |
|
characters: str = None, |
|
punctuations: str = None, |
|
pad: str = None, |
|
eos: str = None, |
|
bos: str = None, |
|
blank: str = None, |
|
is_unique: bool = False, |
|
is_sorted: bool = True, |
|
) -> None: |
|
self._characters = characters |
|
self._punctuations = punctuations |
|
self._pad = pad |
|
self._eos = eos |
|
self._bos = bos |
|
self._blank = blank |
|
self.is_unique = is_unique |
|
self.is_sorted = is_sorted |
|
self._create_vocab() |
|
|
|
@property |
|
def pad_id(self) -> int: |
|
return self.char_to_id(self.pad) if self.pad else len(self.vocab) |
|
|
|
@property |
|
def blank_id(self) -> int: |
|
return self.char_to_id(self.blank) if self.blank else len(self.vocab) |
|
|
|
@property |
|
def eos_id(self) -> int: |
|
return self.char_to_id(self.eos) if self.eos else len(self.vocab) |
|
|
|
@property |
|
def bos_id(self) -> int: |
|
return self.char_to_id(self.bos) if self.bos else len(self.vocab) |
|
|
|
@property |
|
def characters(self): |
|
return self._characters |
|
|
|
@characters.setter |
|
def characters(self, characters): |
|
self._characters = characters |
|
self._create_vocab() |
|
|
|
@property |
|
def punctuations(self): |
|
return self._punctuations |
|
|
|
@punctuations.setter |
|
def punctuations(self, punctuations): |
|
self._punctuations = punctuations |
|
self._create_vocab() |
|
|
|
@property |
|
def pad(self): |
|
return self._pad |
|
|
|
@pad.setter |
|
def pad(self, pad): |
|
self._pad = pad |
|
self._create_vocab() |
|
|
|
@property |
|
def eos(self): |
|
return self._eos |
|
|
|
@eos.setter |
|
def eos(self, eos): |
|
self._eos = eos |
|
self._create_vocab() |
|
|
|
@property |
|
def bos(self): |
|
return self._bos |
|
|
|
@bos.setter |
|
def bos(self, bos): |
|
self._bos = bos |
|
self._create_vocab() |
|
|
|
@property |
|
def blank(self): |
|
return self._blank |
|
|
|
@blank.setter |
|
def blank(self, blank): |
|
self._blank = blank |
|
self._create_vocab() |
|
|
|
@property |
|
def vocab(self): |
|
return self._vocab |
|
|
|
@vocab.setter |
|
def vocab(self, vocab): |
|
self._vocab = vocab |
|
self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)} |
|
self._id_to_char = { |
|
idx: char for idx, char in enumerate(self.vocab) |
|
} |
|
|
|
@property |
|
def num_chars(self): |
|
return len(self._vocab) |
|
|
|
def _create_vocab(self): |
|
_vocab = self._characters |
|
if self.is_unique: |
|
_vocab = list(set(_vocab)) |
|
if self.is_sorted: |
|
_vocab = sorted(_vocab) |
|
_vocab = list(_vocab) |
|
_vocab = [self._blank] + _vocab if self._blank is not None and len(self._blank) > 0 else _vocab |
|
_vocab = [self._bos] + _vocab if self._bos is not None and len(self._bos) > 0 else _vocab |
|
_vocab = [self._eos] + _vocab if self._eos is not None and len(self._eos) > 0 else _vocab |
|
_vocab = [self._pad] + _vocab if self._pad is not None and len(self._pad) > 0 else _vocab |
|
self.vocab = _vocab + list(self._punctuations) |
|
if self.is_unique: |
|
duplicates = {x for x in self.vocab if self.vocab.count(x) > 1} |
|
assert ( |
|
len(self.vocab) == len(self._char_to_id) == len(self._id_to_char) |
|
), f" [!] There are duplicate characters in the character set. {duplicates}" |
|
|
|
def char_to_id(self, char: str) -> int: |
|
try: |
|
return self._char_to_id[char] |
|
except KeyError as e: |
|
raise KeyError(f" [!] {repr(char)} is not in the vocabulary.") from e |
|
|
|
def id_to_char(self, idx: int) -> str: |
|
return self._id_to_char[idx] |
|
|
|
def print_log(self, level: int = 0): |
|
""" |
|
Prints the vocabulary in a nice format. |
|
""" |
|
indent = "\t" * level |
|
print(f"{indent}| > Characters: {self._characters}") |
|
print(f"{indent}| > Punctuations: {self._punctuations}") |
|
print(f"{indent}| > Pad: {self._pad}") |
|
print(f"{indent}| > EOS: {self._eos}") |
|
print(f"{indent}| > BOS: {self._bos}") |
|
print(f"{indent}| > Blank: {self._blank}") |
|
print(f"{indent}| > Vocab: {self.vocab}") |
|
print(f"{indent}| > Num chars: {self.num_chars}") |
|
|
|
@staticmethod |
|
def init_from_config(config: "Coqpit"): |
|
"""Init your character class from a config. |
|
|
|
Implement this method for your subclass. |
|
""" |
|
|
|
if config.characters is not None: |
|
return BaseCharacters(**config.characters), config |
|
|
|
characters = BaseCharacters() |
|
new_config = replace(config, characters=characters.to_config()) |
|
return characters, new_config |
|
|
|
def to_config(self) -> "CharactersConfig": |
|
return CharactersConfig( |
|
characters=self._characters, |
|
punctuations=self._punctuations, |
|
pad=self._pad, |
|
eos=self._eos, |
|
bos=self._bos, |
|
blank=self._blank, |
|
is_unique=self.is_unique, |
|
is_sorted=self.is_sorted, |
|
) |
|
|
|
|
|
class IPAPhonemes(BaseCharacters): |
|
|
|
|
|
def __init__( |
|
self, |
|
characters: str = _phonemes, |
|
punctuations: str = _punctuations, |
|
pad: str = _pad, |
|
eos: str = _eos, |
|
bos: str = _bos, |
|
blank: str = _blank, |
|
is_unique: bool = False, |
|
is_sorted: bool = True, |
|
) -> None: |
|
super().__init__(characters, punctuations, pad, eos, bos, blank, is_unique, is_sorted) |
|
|
|
@staticmethod |
|
def init_from_config(config: "Coqpit"): |
|
"""Init a IPAPhonemes object from a model config |
|
|
|
If characters are not defined in the config, it will be set to the default characters and the config |
|
will be updated. |
|
""" |
|
|
|
if "characters" in config and config.characters is not None: |
|
if "phonemes" in config.characters and config.characters.phonemes is not None: |
|
config.characters["characters"] = config.characters["phonemes"] |
|
return ( |
|
IPAPhonemes( |
|
characters=config.characters["characters"], |
|
punctuations=config.characters["punctuations"], |
|
pad=config.characters["pad"], |
|
eos=config.characters["eos"], |
|
bos=config.characters["bos"], |
|
blank=config.characters["blank"], |
|
is_unique=config.characters["is_unique"], |
|
is_sorted=config.characters["is_sorted"], |
|
), |
|
config, |
|
) |
|
|
|
if config.characters is not None: |
|
return IPAPhonemes(**config.characters), config |
|
|
|
characters = IPAPhonemes() |
|
new_config = replace(config, characters=characters.to_config()) |
|
return characters, new_config |
|
|
|
|
|
class Graphemes(BaseCharacters): |
|
|
|
|
|
def __init__( |
|
self, |
|
characters: str = _characters, |
|
punctuations: str = _punctuations, |
|
pad: str = _pad, |
|
eos: str = _eos, |
|
bos: str = _bos, |
|
blank: str = _blank, |
|
is_unique: bool = False, |
|
is_sorted: bool = True, |
|
) -> None: |
|
super().__init__(characters, punctuations, pad, eos, bos, blank, is_unique, is_sorted) |
|
|
|
@staticmethod |
|
def init_from_config(config: "Coqpit"): |
|
"""Init a Graphemes object from a model config |
|
|
|
If characters are not defined in the config, it will be set to the default characters and the config |
|
will be updated. |
|
""" |
|
if config.characters is not None: |
|
|
|
if "phonemes" in config.characters: |
|
return ( |
|
Graphemes( |
|
characters=config.characters["characters"], |
|
punctuations=config.characters["punctuations"], |
|
pad=config.characters["pad"], |
|
eos=config.characters["eos"], |
|
bos=config.characters["bos"], |
|
blank=config.characters["blank"], |
|
is_unique=config.characters["is_unique"], |
|
is_sorted=config.characters["is_sorted"], |
|
), |
|
config, |
|
) |
|
return Graphemes(**config.characters), config |
|
characters = Graphemes() |
|
new_config = replace(config, characters=characters.to_config()) |
|
return characters, new_config |
|
|
|
|
|
if __name__ == "__main__": |
|
gr = Graphemes() |
|
ph = IPAPhonemes() |
|
gr.print_log() |
|
ph.print_log() |
|
|
|
|
|
class VitsCharacters(BaseCharacters): |
|
"""Characters class for VITs model for compatibility with pre-trained models""" |
|
|
|
def __init__( |
|
self, |
|
graphemes: str = _characters, |
|
punctuations: str = _punctuations, |
|
pad: str = _pad, |
|
ipa_characters: str = _phonemes, |
|
) -> None: |
|
if ipa_characters is not None: |
|
graphemes += ipa_characters |
|
super().__init__(graphemes, punctuations, pad, None, None, "<BLNK>", is_unique=False, is_sorted=True) |
|
|
|
def _create_vocab(self): |
|
self._vocab = [self._pad] + list(self._punctuations) + list(self._characters) + [self._blank] |
|
self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)} |
|
|
|
self._id_to_char = {idx: char for idx, char in enumerate(self.vocab)} |
|
|
|
@staticmethod |
|
def init_from_config(config): |
|
_pad = config.characters.pad |
|
_punctuations = config.characters.punctuations |
|
_letters = config.characters.characters |
|
_letters_ipa = config.characters.phonemes |
|
return ( |
|
VitsCharacters(graphemes=_letters, ipa_characters=_letters_ipa, punctuations=_punctuations, pad=_pad), |
|
config, |
|
) |
|
|
|
def to_config(self) -> "CharactersConfig": |
|
return CharactersConfig( |
|
characters=self._characters, |
|
punctuations=self._punctuations, |
|
pad=self._pad, |
|
eos=None, |
|
bos=None, |
|
blank=self._blank, |
|
is_unique=False, |
|
is_sorted=True, |
|
) |
|
|
|
class TTSTokenizer: |
|
def __init__( |
|
self, |
|
text_cleaner: Callable = None, |
|
characters: "BaseCharacters" = None, |
|
): |
|
self.text_cleaner = text_cleaner |
|
self.characters = characters |
|
self.not_found_characters = [] |
|
|
|
@property |
|
def characters(self): |
|
return self._characters |
|
|
|
@characters.setter |
|
def characters(self, new_characters): |
|
self._characters = new_characters |
|
self.pad_id = self.characters.char_to_id(self.characters.pad) if self.characters.pad else None |
|
self.blank_id = self.characters.char_to_id(self.characters.blank) if self.characters.blank else None |
|
|
|
def encode(self, text: str) -> List[int]: |
|
"""Encodes a string of text as a sequence of IDs.""" |
|
token_ids = [] |
|
for char in text: |
|
try: |
|
idx = self.characters.char_to_id(char) |
|
token_ids.append(idx) |
|
except KeyError: |
|
|
|
if char not in self.not_found_characters: |
|
self.not_found_characters.append(char) |
|
print(text) |
|
print(f" [!] Character {repr(char)} not found in the vocabulary. Discarding it.") |
|
return token_ids |
|
|
|
def text_to_ids(self, text: str, language: str = None) -> List[int]: |
|
text = self.text_cleaner(text) |
|
text = self.encode(text) |
|
text = self.intersperse_blank_char(text, True) |
|
return text |
|
|
|
def pad_with_bos_eos(self, char_sequence: List[str]): |
|
"""Pads a sequence with the special BOS and EOS characters.""" |
|
return [self.characters.bos_id] + list(char_sequence) + [self.characters.eos_id] |
|
|
|
def intersperse_blank_char(self, char_sequence: List[str], use_blank_char: bool = False): |
|
"""Intersperses the blank character between characters in a sequence. |
|
|
|
Use the ```blank``` character if defined else use the ```pad``` character. |
|
""" |
|
char_to_use = self.characters.blank_id if use_blank_char else self.characters.pad |
|
result = [char_to_use] * (len(char_sequence) * 2 + 1) |
|
result[1::2] = char_sequence |
|
return result |
|
|
|
@staticmethod |
|
def init_from_config(config: "Coqpit", characters: "BaseCharacters" = None): |
|
text_cleaner = multilingual_cleaners |
|
CharactersClass = VitsCharacters |
|
characters, new_config = CharactersClass.init_from_config(config) |
|
|
|
new_config.characters.characters_class = VitsCharacters |
|
return ( |
|
TTSTokenizer(text_cleaner, characters),new_config) |
|
|
|
|
|
def multilingual_cleaners(text): |
|
"""Pipeline for multilingual text""" |
|
text = lowercase(text) |
|
text = replace_symbols(text, lang=None) |
|
text = remove_aux_symbols(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
def lowercase(text): |
|
return text.lower() |
|
|
|
def collapse_whitespace(text): |
|
return re.sub(_whitespace_re, " ", text).strip() |
|
|
|
def replace_symbols(text, lang="en"): |
|
|
|
text = text.replace(";", ",") |
|
text = text.replace("-", " ") if lang != "ca" else text.replace("-", "") |
|
text = text.replace(":", ",") |
|
if lang == "en": |
|
text = text.replace("&", " and ") |
|
elif lang == "fr": |
|
text = text.replace("&", " et ") |
|
elif lang == "pt": |
|
text = text.replace("&", " e ") |
|
elif lang == "ca": |
|
text = text.replace("&", " i ") |
|
text = text.replace("'", "") |
|
return text |
|
|
|
def remove_aux_symbols(text): |
|
text = re.sub(r"[\<\>\(\)\[\]\"]+", "", text) |
|
return text |