SWilliams20 commited on
Commit
82dd55a
1 Parent(s): 7c170e0

Update watermark_detection.py

Browse files
Files changed (1) hide show
  1. watermark_detection.py +50 -0
watermark_detection.py CHANGED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # watermark_detection.py
2
+
3
+ # Import necessary libraries
4
+ import numpy as np
5
+ import tensorflow as tf # Assuming TensorFlow is used
6
+
7
+ # Function to detect and extract watermark from the model
8
+ def detect_watermark(model, test_data):
9
+ # Load the model (assuming 'model' is the loaded model)
10
+
11
+ # Example pseudocode to demonstrate watermark detection
12
+ watermark_detected = False
13
+ watermark = None
14
+
15
+ # Check specific layers or parameters that might contain the watermark
16
+ # For example, if the watermark was embedded in certain weights or biases
17
+
18
+ # Access a specific layer (example: last layer)
19
+ watermark_layer = model.layers[-1] # Accessing the last layer as an example
20
+
21
+ # Get the weights of the layer
22
+ layer_weights = watermark_layer.get_weights()
23
+
24
+ # Analyze the weights or specific parameters for watermark presence
25
+ # Example: Check if the weights contain a specific pattern or information
26
+ # Note: This logic depends on the method used for watermark embedding
27
+ # Here, assuming watermark is embedded as a specific value in weights
28
+ watermark_value = 1.0 # Example watermark value
29
+
30
+ # Extract the watermark if the pattern or value is detected in the weights
31
+ if watermark_value in layer_weights[0]: # Considering only the first weight matrix for simplicity
32
+ watermark_detected = True
33
+ watermark = "Watermark detected in layer weights!"
34
+
35
+ return watermark_detected, watermark
36
+
37
+ # Example usage
38
+ if __name__ == "__main__":
39
+ # Load your trained model and test data
40
+ # Example: Load model and test data
41
+ model = tf.keras.models.load_model('path_to_your_model')
42
+ test_data = np.random.random((100, 10)) # Example test data
43
+
44
+ # Call the watermark detection function with your loaded model and test data
45
+ detected, extracted_watermark = detect_watermark(model, test_data)
46
+
47
+ # Print detection results
48
+ print("Watermark Detected:", detected)
49
+ if detected:
50
+ print("Extracted Watermark:", extracted_watermark)