SWilliams20
commited on
Commit
•
82dd55a
1
Parent(s):
7c170e0
Update watermark_detection.py
Browse files- watermark_detection.py +50 -0
watermark_detection.py
CHANGED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# watermark_detection.py
|
2 |
+
|
3 |
+
# Import necessary libraries
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf # Assuming TensorFlow is used
|
6 |
+
|
7 |
+
# Function to detect and extract watermark from the model
|
8 |
+
def detect_watermark(model, test_data):
|
9 |
+
# Load the model (assuming 'model' is the loaded model)
|
10 |
+
|
11 |
+
# Example pseudocode to demonstrate watermark detection
|
12 |
+
watermark_detected = False
|
13 |
+
watermark = None
|
14 |
+
|
15 |
+
# Check specific layers or parameters that might contain the watermark
|
16 |
+
# For example, if the watermark was embedded in certain weights or biases
|
17 |
+
|
18 |
+
# Access a specific layer (example: last layer)
|
19 |
+
watermark_layer = model.layers[-1] # Accessing the last layer as an example
|
20 |
+
|
21 |
+
# Get the weights of the layer
|
22 |
+
layer_weights = watermark_layer.get_weights()
|
23 |
+
|
24 |
+
# Analyze the weights or specific parameters for watermark presence
|
25 |
+
# Example: Check if the weights contain a specific pattern or information
|
26 |
+
# Note: This logic depends on the method used for watermark embedding
|
27 |
+
# Here, assuming watermark is embedded as a specific value in weights
|
28 |
+
watermark_value = 1.0 # Example watermark value
|
29 |
+
|
30 |
+
# Extract the watermark if the pattern or value is detected in the weights
|
31 |
+
if watermark_value in layer_weights[0]: # Considering only the first weight matrix for simplicity
|
32 |
+
watermark_detected = True
|
33 |
+
watermark = "Watermark detected in layer weights!"
|
34 |
+
|
35 |
+
return watermark_detected, watermark
|
36 |
+
|
37 |
+
# Example usage
|
38 |
+
if __name__ == "__main__":
|
39 |
+
# Load your trained model and test data
|
40 |
+
# Example: Load model and test data
|
41 |
+
model = tf.keras.models.load_model('path_to_your_model')
|
42 |
+
test_data = np.random.random((100, 10)) # Example test data
|
43 |
+
|
44 |
+
# Call the watermark detection function with your loaded model and test data
|
45 |
+
detected, extracted_watermark = detect_watermark(model, test_data)
|
46 |
+
|
47 |
+
# Print detection results
|
48 |
+
print("Watermark Detected:", detected)
|
49 |
+
if detected:
|
50 |
+
print("Extracted Watermark:", extracted_watermark)
|