SVECTOR-OFFICIAL commited on
Commit
39f4015
Β·
verified Β·
1 Parent(s): 440ab3d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +147 -14
README.md CHANGED
@@ -4,35 +4,168 @@ tags:
4
  - spec-vision
5
  - vision-language-model
6
  - transformers
7
- license: apache-2.0
8
  ---
9
 
10
- # SpecVision Model
11
 
12
- This is the SpecVision model, a vision-language model based on the transformers architecture.
13
 
14
- ## Model Description
15
 
16
- SpecVision is designed for vision-language tasks, combining visual and textual understanding capabilities.
17
 
18
- ## Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ```python
21
- from transformers import AutoConfig, AutoModelForCausalLM, AutoProcessor
 
 
22
 
23
  # Load the model and processor
24
- model = AutoModelForCausalLM.from_pretrained("Spec-4B-Vision-V1")
25
- processor = AutoProcessor.from_pretrained("Spec-4B-Vision-V1")
 
 
 
 
 
 
 
26
 
27
  # Process inputs
28
  inputs = processor(images=image, text=text, return_tensors="pt")
29
- outputs = model(**inputs)
 
 
 
 
 
 
30
  ```
31
 
32
- ## Training and Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
- [Add your training and evaluation details here]
35
 
36
- ## Limitations and Biases
37
 
38
- [Add any known limitations and biases here]
 
 
 
4
  - spec-vision
5
  - vision-language-model
6
  - transformers
7
+ license: mit
8
  ---
9
 
10
+ # Model Summary
11
 
12
+ Spec-Vision-V1 is a lightweight, state-of-the-art open multimodal model built on datasets that include synthetic data and filtered publicly available sources, with a focus on high-quality, reasoning-dense data in both text and vision. The model belongs to the SpecVision family and supports a 128K context length (in tokens). It has undergone a rigorous enhancement process, incorporating supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures.
13
 
14
+ # πŸš€ Model Overview
15
 
16
+ **Spec-Vision-V1** is built for **deep integration of visual and textual data**, enabling it to understand and process images in combination with natural language. The model has been trained on a diverse dataset containing images with associated captions, descriptions, and contextual information.
17
 
18
+ ### ✨ Key Features
19
+
20
+ - **πŸ–ΌοΈ Multimodal Processing**: Seamlessly combines image and text inputs.
21
+ - **⚑ Transformer-Based Architecture**: High efficiency in vision-language understanding.
22
+ - **πŸ“ Optimized for VQA & Captioning**: Excels in answering visual questions and generating descriptions.
23
+ - **πŸ“₯ Pre-trained Model**: Available for inference and fine-tuning.
24
+
25
+ ---
26
+
27
+ ## πŸ“Œ Installation
28
+
29
+ To use Spec-Vision-V1, install the required dependencies:
30
+
31
+ ```bash
32
+ pip install transformers torch torchvision pillow
33
+ ```
34
+
35
+ ---
36
+
37
+ ## πŸ”₯ Usage
38
+
39
+ ### Load the Model
40
 
41
  ```python
42
+ from transformers import AutoModelForCausalLM, AutoProcessor
43
+ from PIL import Image
44
+ import torch
45
 
46
  # Load the model and processor
47
+ model_name = "Spec-Vision-V1"
48
+ model = AutoModelForCausalLM.from_pretrained(model_name)
49
+ processor = AutoProcessor.from_pretrained(model_name)
50
+
51
+ # Load an example image
52
+ image = Image.open("example.jpg")
53
+
54
+ # Input text prompt
55
+ text = "Describe the image in detail."
56
 
57
  # Process inputs
58
  inputs = processor(images=image, text=text, return_tensors="pt")
59
+
60
+ # Generate output
61
+ with torch.no_grad():
62
+ outputs = model(**inputs)
63
+
64
+ # Print the generated text
65
+ print(outputs)
66
  ```
67
 
68
+ ---
69
+
70
+ ## πŸ“Š Model Specifications
71
+
72
+ | Attribute | Description |
73
+ |-----------------|----------------------------------------------|
74
+ | **Model Name** | Spec-Vision-V1 |
75
+ | **Architecture** | Transformer-based Vision-Language Model |
76
+ | **Pretrained** | βœ… Yes |
77
+ | **Dataset** | Trained on diverse image-text pairs |
78
+ | **Framework** | PyTorch & Hugging Face Transformers |
79
+
80
+ ---
81
+
82
+ ## 🎯 Applications
83
+
84
+ | Task | Description |
85
+ |--------------------------|--------------------------------------------------------------|
86
+ | **πŸ–ΌοΈ Image Captioning** | Generates detailed descriptions for input images. |
87
+ | **🧐 Visual Question Answering** | Answers questions about images. |
88
+ | **πŸ”Ž Image-Text Matching** | Determines the relevance of an image to a given text. |
89
+ | **🌍 Scene Understanding** | Extracts insights from complex visual data. |
90
+
91
+ ---
92
+
93
+ ## BLINK Benchmark
94
+
95
+ A benchmark with 14 visual tasks that humans can solve very quickly but are still hard for current multimodal LLMs.
96
+
97
+ | Benchmark | Spec-Vision-V1 | LlaVA-Interleave-Qwen-7B | InternVL-2-4B | InternVL-2-8B | Gemini-1.5-Flash | GPT-4o-mini | Claude-3.5-Sonnet | Gemini-1.5-Pro | GPT-4o |
98
+ |--------------------------|--------------|--------------------------|---------------|---------------|------------------|-------------|-------------------|----------------|--------|
99
+ | Art Style | 87.2 | 62.4 | 55.6 | 52.1 | 64.1 | 70.1 | 59.8 | 70.9 | 73.3 |
100
+ | Counting | 54.2 | 56.7 | 54.2 | 66.7 | 51.7 | 55.0 | 59.2 | 65.0 | 65.0 |
101
+ | Forensic Detection | 92.4 | 31.1 | 40.9 | 34.1 | 54.5 | 38.6 | 67.4 | 60.6 | 75.8 |
102
+ | Functional Correspondence | 29.2 | 34.6 | 24.6 | 24.6 | 33.1 | 26.9 | 33.8 | 31.5 | 43.8 |
103
+ | IQ Test | 25.3 | 26.7 | 26.0 | 30.7 | 25.3 | 29.3 | 26.0 | 34.0 | 19.3 |
104
+ | Jigsaw | 68.0 | 86.0 | 55.3 | 52.7 | 71.3 | 72.7 | 57.3 | 68.0 | 67.3 |
105
+ | Multi-View Reasoning | 54.1 | 44.4 | 48.9 | 42.9 | 48.9 | 48.1 | 55.6 | 49.6 | 46.6 |
106
+ | Object Localization | 49.2 | 54.9 | 53.3 | 54.1 | 44.3 | 57.4 | 62.3 | 65.6 | 68.0 |
107
+ | Relative Depth | 69.4 | 77.4 | 63.7 | 67.7 | 57.3 | 58.1 | 71.8 | 76.6 | 71.0 |
108
+ | Relative Reflectance | 37.3 | 34.3 | 32.8 | 38.8 | 32.8 | 27.6 | 36.6 | 38.8 | 40.3 |
109
+ | Semantic Correspondence | 36.7 | 31.7 | 31.7 | 22.3 | 32.4 | 31.7 | 45.3 | 48.9 | 54.0 |
110
+ | Spatial Relation | 65.7 | 75.5 | 78.3 | 78.3 | 55.9 | 81.1 | 60.1 | 79.0 | 84.6 |
111
+ | Visual Correspondence | 53.5 | 40.7 | 34.9 | 33.1 | 29.7 | 52.9 | 72.1 | 81.4 | 86.0 |
112
+ | Visual Similarity | 83.0 | 91.9 | 48.1 | 45.2 | 47.4 | 77.8 | 84.4 | 81.5 | 88.1 |
113
+ | **Overall** | **57.0** | **53.1** | **45.9** | **45.4** | **45.8** | **51.9** | **56.5** | **61.0** | **63.2** |
114
+
115
+ ---
116
+
117
+ ## Video-MME Benchmark
118
+
119
+ A benchmark that comprehensively assesses the capabilities of multimodal LLMs in processing video data, covering a wide range of visual domains, temporal durations, and data modalities.
120
+
121
+ | Benchmark | Spec-Vision-V1 | LlaVA-Interleave-Qwen-7B | InternVL-2-4B | InternVL-2-8B | Gemini-1.5-Flash | GPT-4o-mini | Claude-3.5-Sonnet | Gemini-1.5-Pro | GPT-4o |
122
+ |-------------------------|--------------|--------------------------|---------------|---------------|------------------|-------------|-------------------|----------------|--------|
123
+ | Short (<2min) | 60.8 | 62.3 | 60.7 | 61.7 | 72.2 | 70.1 | 66.3 | 73.3 | 77.7 |
124
+ | Medium (4-15min) | 47.7 | 47.1 | 46.4 | 49.6 | 62.7 | 59.6 | 54.7 | 61.2 | 68.0 |
125
+ | Long (30-60min) | 43.8 | 41.2 | 42.6 | 46.6 | 52.1 | 53.9 | 46.6 | 53.2 | 59.6 |
126
+ | **Overall** | **50.8** | **50.2** | **49.9** | **52.6** | **62.3** | **61.2** | **55.9** | **62.6** | **68.4** |
127
+
128
+
129
+ ---
130
+
131
+ ## πŸ—οΈ Model Training Details
132
+
133
+ | Parameter | Value |
134
+ |----------------------|--------------------------------|
135
+ | **Batch Size** | 16 |
136
+ | **Optimizer** | AdamW |
137
+ | **Learning Rate** | 5e-5 |
138
+ | **Training Steps** | 100k |
139
+ | **Loss Function** | CrossEntropyLoss |
140
+ | **Framework** | PyTorch & Transformers |
141
+
142
+ ---
143
+
144
+ ## πŸ“œ License
145
+
146
+ **Spec-Vision-V1** is released under the **MIT**.
147
+
148
+ ---
149
+
150
+ ## πŸ“– Citation
151
+
152
+ If you use **Spec-Vision-V1** in your research or application, please cite:
153
+
154
+ ```bibtex
155
+ @article{SpecVision2025,
156
+ title={Spec-Vision-V1: A Vision-Language Transformer Model},
157
+ author={SVECTOR},
158
+ year={2025},
159
+ journal={SVECTOR Research}
160
+ }
161
+ ```
162
+
163
+ ---
164
 
165
+ ## πŸ“¬ Contact
166
 
167
+ For support or inquiries, reach out to **SVECTOR**:
168
 
169
+ - **🌐 Website**: [svector.co.in](https://www.svector.co.in)
170
+ - **πŸ“§ Email**: [Research@svector.co.in](Research@svector.co.in)
171
+ - **✨ GitHub**: [SVECTOR GitHub](https://github.com/SVECTOR-CORPORATION)