|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Spec-Vision model configuration""" |
|
|
|
from typing import Dict, Optional, Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class SpecVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`SpecVisionModel`]. It is used to instantiate a Spec-Vision |
|
model according to the specified arguments, defining the model architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32064): |
|
Vocabulary size of the model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`SpecVisionModel`]. |
|
hidden_size (`int`, *optional*, defaults to 3072): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 8192): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_key_value_heads (`int`, *optional*): |
|
Number of key/value heads for implementing Grouped Query Attention. |
|
resid_pdrop (`float`, *optional*, defaults to 0.0): |
|
Dropout probability for MLP outputs. |
|
embd_pdrop (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for embeddings. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio after computing attention scores. |
|
hidden_act (`str`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 4096): |
|
The maximum sequence length that this model might ever be used with. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-5): |
|
The epsilon value used for RMSNorm. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether to use the past key/values attentions for faster inference. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`dict`, *optional*): |
|
Configuration for RoPE scaling strategy. |
|
embd_layer (`dict`, *optional*): |
|
Configuration for the embedding layer, including image embedding settings. |
|
""" |
|
model_type = "spec_vision" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size: int = 32064, |
|
hidden_size: int = 3072, |
|
intermediate_size: int = 8192, |
|
num_hidden_layers: int = 32, |
|
num_attention_heads: int = 32, |
|
num_key_value_heads: Optional[int] = None, |
|
resid_pdrop: float = 0.0, |
|
embd_pdrop: float = 0.0, |
|
attention_dropout: float = 0.0, |
|
hidden_act: str = "silu", |
|
max_position_embeddings: int = 4096, |
|
initializer_range: float = 0.02, |
|
rms_norm_eps: float = 1e-5, |
|
use_cache: bool = True, |
|
rope_theta: float = 10000.0, |
|
rope_scaling: Optional[Dict] = None, |
|
embd_layer: Dict[str, Union[str, bool]] = { |
|
"embedding_cls": "image", |
|
"hd_transform_order": "sub_glb", |
|
"projection_cls": "mlp", |
|
"use_hd_transform": True, |
|
"with_learnable_separator": True |
|
}, |
|
bos_token_id: int = 1, |
|
eos_token_id: int = 32000, |
|
pad_token_id: int = 32000, |
|
tie_word_embeddings: bool = False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads or num_attention_heads |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attention_dropout = attention_dropout |
|
self.hidden_act = hidden_act |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.embd_layer = embd_layer |
|
|
|
super().__init__( |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
pad_token_id=pad_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, " |
|
f"got {self.rope_scaling}" |
|
) |
|
|
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None) |
|
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None) |
|
|
|
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]: |
|
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}") |
|
|
|
head_dim = self.hidden_size // self.num_attention_heads // 2 |
|
|
|
for factor, name in [(rope_scaling_short_factor, "short_factor"), (rope_scaling_long_factor, "long_factor")]: |
|
if not (isinstance(factor, list) and all(isinstance(x, (int, float)) for x in factor)): |
|
raise ValueError(f"`rope_scaling`'s {name} field must be a list of numbers, got {factor}") |
|
if len(factor) != head_dim: |
|
raise ValueError(f"`rope_scaling`'s {name} field must have length {head_dim}, got {len(factor)}") |