model_fall
/
PaddleDetection-release-2.6
/deploy
/serving
/cpp
/preprocess
/yolov3_darknet53_270e_coco.cpp
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | |
| // | |
| // Licensed under the Apache License, Version 2.0 (the "License"); | |
| // you may not use this file except in compliance with the License. | |
| // You may obtain a copy of the License at | |
| // | |
| // http://www.apache.org/licenses/LICENSE-2.0 | |
| // | |
| // Unless required by applicable law or agreed to in writing, software | |
| // distributed under the License is distributed on an "AS IS" BASIS, | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| // See the License for the specific language governing permissions and | |
| // limitations under the License. | |
| namespace baidu { | |
| namespace paddle_serving { | |
| namespace serving { | |
| using baidu::paddle_serving::Timer; | |
| using baidu::paddle_serving::predictor::InferManager; | |
| using baidu::paddle_serving::predictor::MempoolWrapper; | |
| using baidu::paddle_serving::predictor::PaddleGeneralModelConfig; | |
| using baidu::paddle_serving::predictor::general_model::Request; | |
| using baidu::paddle_serving::predictor::general_model::Response; | |
| using baidu::paddle_serving::predictor::general_model::Tensor; | |
| int yolov3_darknet53_270e_coco::inference() { | |
| VLOG(2) << "Going to run inference"; | |
| const std::vector<std::string> pre_node_names = pre_names(); | |
| if (pre_node_names.size() != 1) { | |
| LOG(ERROR) << "This op(" << op_name() | |
| << ") can only have one predecessor op, but received " | |
| << pre_node_names.size(); | |
| return -1; | |
| } | |
| const std::string pre_name = pre_node_names[0]; | |
| const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name); | |
| if (!input_blob) { | |
| LOG(ERROR) << "input_blob is nullptr,error"; | |
| return -1; | |
| } | |
| uint64_t log_id = input_blob->GetLogId(); | |
| VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name; | |
| GeneralBlob *output_blob = mutable_data<GeneralBlob>(); | |
| if (!output_blob) { | |
| LOG(ERROR) << "output_blob is nullptr,error"; | |
| return -1; | |
| } | |
| output_blob->SetLogId(log_id); | |
| if (!input_blob) { | |
| LOG(ERROR) << "(logid=" << log_id | |
| << ") Failed mutable depended argument, op:" << pre_name; | |
| return -1; | |
| } | |
| const TensorVector *in = &input_blob->tensor_vector; | |
| TensorVector *out = &output_blob->tensor_vector; | |
| int batch_size = input_blob->_batch_size; | |
| output_blob->_batch_size = batch_size; | |
| VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size; | |
| Timer timeline; | |
| int64_t start = timeline.TimeStampUS(); | |
| timeline.Start(); | |
| // only support string type | |
| char *total_input_ptr = static_cast<char *>(in->at(0).data.data()); | |
| std::string base64str = total_input_ptr; | |
| cv::Mat img = Base2Mat(base64str); | |
| cv::cvtColor(img, img, cv::COLOR_BGR2RGB); | |
| // preprocess | |
| std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f); | |
| preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h, | |
| im_shape_w, mean_, scale_, is_scale_); | |
| // create real_in | |
| TensorVector *real_in = new TensorVector(); | |
| if (!real_in) { | |
| LOG(ERROR) << "real_in is nullptr,error"; | |
| return -1; | |
| } | |
| int in_num = 0; | |
| size_t databuf_size = 0; | |
| void *databuf_data = NULL; | |
| char *databuf_char = NULL; | |
| // im_shape | |
| std::vector<float> im_shape{static_cast<float>(im_shape_h), | |
| static_cast<float>(im_shape_w)}; | |
| databuf_size = 2 * sizeof(float); | |
| databuf_data = MempoolWrapper::instance().malloc(databuf_size); | |
| if (!databuf_data) { | |
| LOG(ERROR) << "Malloc failed, size: " << databuf_size; | |
| return -1; | |
| } | |
| memcpy(databuf_data, im_shape.data(), databuf_size); | |
| databuf_char = reinterpret_cast<char *>(databuf_data); | |
| paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size); | |
| paddle::PaddleTensor tensor_in_0; | |
| tensor_in_0.name = "im_shape"; | |
| tensor_in_0.dtype = paddle::PaddleDType::FLOAT32; | |
| tensor_in_0.shape = {1, 2}; | |
| tensor_in_0.lod = in->at(0).lod; | |
| tensor_in_0.data = paddleBuf_0; | |
| real_in->push_back(tensor_in_0); | |
| // image | |
| in_num = 1 * 3 * im_shape_h * im_shape_w; | |
| databuf_size = in_num * sizeof(float); | |
| databuf_data = MempoolWrapper::instance().malloc(databuf_size); | |
| if (!databuf_data) { | |
| LOG(ERROR) << "Malloc failed, size: " << databuf_size; | |
| return -1; | |
| } | |
| memcpy(databuf_data, input.data(), databuf_size); | |
| databuf_char = reinterpret_cast<char *>(databuf_data); | |
| paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size); | |
| paddle::PaddleTensor tensor_in_1; | |
| tensor_in_1.name = "image"; | |
| tensor_in_1.dtype = paddle::PaddleDType::FLOAT32; | |
| tensor_in_1.shape = {1, 3, im_shape_h, im_shape_w}; | |
| tensor_in_1.lod = in->at(0).lod; | |
| tensor_in_1.data = paddleBuf_1; | |
| real_in->push_back(tensor_in_1); | |
| // scale_factor | |
| std::vector<float> scale_factor{scale_factor_h, scale_factor_w}; | |
| databuf_size = 2 * sizeof(float); | |
| databuf_data = MempoolWrapper::instance().malloc(databuf_size); | |
| if (!databuf_data) { | |
| LOG(ERROR) << "Malloc failed, size: " << databuf_size; | |
| return -1; | |
| } | |
| memcpy(databuf_data, scale_factor.data(), databuf_size); | |
| databuf_char = reinterpret_cast<char *>(databuf_data); | |
| paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size); | |
| paddle::PaddleTensor tensor_in_2; | |
| tensor_in_2.name = "scale_factor"; | |
| tensor_in_2.dtype = paddle::PaddleDType::FLOAT32; | |
| tensor_in_2.shape = {1, 2}; | |
| tensor_in_2.lod = in->at(0).lod; | |
| tensor_in_2.data = paddleBuf_2; | |
| real_in->push_back(tensor_in_2); | |
| if (InferManager::instance().infer(engine_name().c_str(), real_in, out, | |
| batch_size)) { | |
| LOG(ERROR) << "(logid=" << log_id | |
| << ") Failed do infer in fluid model: " << engine_name().c_str(); | |
| return -1; | |
| } | |
| int64_t end = timeline.TimeStampUS(); | |
| CopyBlobInfo(input_blob, output_blob); | |
| AddBlobInfo(output_blob, start); | |
| AddBlobInfo(output_blob, end); | |
| return 0; | |
| } | |
| void yolov3_darknet53_270e_coco::preprocess_det(const cv::Mat &img, float *data, | |
| float &scale_factor_h, | |
| float &scale_factor_w, | |
| int im_shape_h, int im_shape_w, | |
| const std::vector<float> &mean, | |
| const std::vector<float> &scale, | |
| const bool is_scale) { | |
| // scale_factor | |
| scale_factor_h = | |
| static_cast<float>(im_shape_h) / static_cast<float>(img.rows); | |
| scale_factor_w = | |
| static_cast<float>(im_shape_w) / static_cast<float>(img.cols); | |
| // Resize | |
| cv::Mat resize_img; | |
| cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2); | |
| // Normalize | |
| double e = 1.0; | |
| if (is_scale) { | |
| e /= 255.0; | |
| } | |
| cv::Mat img_fp; | |
| (resize_img).convertTo(img_fp, CV_32FC3, e); | |
| for (int h = 0; h < im_shape_h; h++) { | |
| for (int w = 0; w < im_shape_w; w++) { | |
| img_fp.at<cv::Vec3f>(h, w)[0] = | |
| (img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0]; | |
| img_fp.at<cv::Vec3f>(h, w)[1] = | |
| (img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1]; | |
| img_fp.at<cv::Vec3f>(h, w)[2] = | |
| (img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2]; | |
| } | |
| } | |
| // Permute | |
| int rh = img_fp.rows; | |
| int rw = img_fp.cols; | |
| int rc = img_fp.channels(); | |
| for (int i = 0; i < rc; ++i) { | |
| cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), | |
| i); | |
| } | |
| } | |
| cv::Mat yolov3_darknet53_270e_coco::Base2Mat(std::string &base64_data) { | |
| cv::Mat img; | |
| std::string s_mat; | |
| s_mat = base64Decode(base64_data.data(), base64_data.size()); | |
| std::vector<char> base64_img(s_mat.begin(), s_mat.end()); | |
| img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR | |
| return img; | |
| } | |
| std::string yolov3_darknet53_270e_coco::base64Decode(const char *Data, | |
| int DataByte) { | |
| const char DecodeTable[] = { | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 62, // '+' | |
| 0, 0, 0, | |
| 63, // '/' | |
| 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9' | |
| 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
| 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z' | |
| 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, | |
| 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z' | |
| }; | |
| std::string strDecode; | |
| int nValue; | |
| int i = 0; | |
| while (i < DataByte) { | |
| if (*Data != '\r' && *Data != '\n') { | |
| nValue = DecodeTable[*Data++] << 18; | |
| nValue += DecodeTable[*Data++] << 12; | |
| strDecode += (nValue & 0x00FF0000) >> 16; | |
| if (*Data != '=') { | |
| nValue += DecodeTable[*Data++] << 6; | |
| strDecode += (nValue & 0x0000FF00) >> 8; | |
| if (*Data != '=') { | |
| nValue += DecodeTable[*Data++]; | |
| strDecode += nValue & 0x000000FF; | |
| } | |
| } | |
| i += 4; | |
| } else // 回车换行,跳过 | |
| { | |
| Data++; | |
| i++; | |
| } | |
| } | |
| return strDecode; | |
| } | |
| DEFINE_OP(yolov3_darknet53_270e_coco); | |
| } // namespace serving | |
| } // namespace paddle_serving | |
| } // namespace baidu | |