|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import division |
|
|
|
|
|
import os |
|
|
import cv2 |
|
|
import numpy as np |
|
|
from PIL import Image, ImageDraw, ImageFile |
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = True |
|
|
import math |
|
|
|
|
|
|
|
|
def visualize_box_mask(im, results, labels, threshold=0.5): |
|
|
""" |
|
|
Args: |
|
|
im (str/np.ndarray): path of image/np.ndarray read by cv2 |
|
|
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, |
|
|
matix element:[class, score, x_min, y_min, x_max, y_max] |
|
|
MaskRCNN's results include 'masks': np.ndarray: |
|
|
shape:[N, im_h, im_w] |
|
|
labels (list): labels:['class1', ..., 'classn'] |
|
|
threshold (float): Threshold of score. |
|
|
Returns: |
|
|
im (PIL.Image.Image): visualized image |
|
|
""" |
|
|
if isinstance(im, str): |
|
|
im = Image.open(im).convert('RGB') |
|
|
elif isinstance(im, np.ndarray): |
|
|
im = Image.fromarray(im) |
|
|
if 'masks' in results and 'boxes' in results and len(results['boxes']) > 0: |
|
|
im = draw_mask( |
|
|
im, results['boxes'], results['masks'], labels, threshold=threshold) |
|
|
if 'boxes' in results and len(results['boxes']) > 0: |
|
|
im = draw_box(im, results['boxes'], labels, threshold=threshold) |
|
|
if 'segm' in results: |
|
|
im = draw_segm( |
|
|
im, |
|
|
results['segm'], |
|
|
results['label'], |
|
|
results['score'], |
|
|
labels, |
|
|
threshold=threshold) |
|
|
return im |
|
|
|
|
|
|
|
|
def get_color_map_list(num_classes): |
|
|
""" |
|
|
Args: |
|
|
num_classes (int): number of class |
|
|
Returns: |
|
|
color_map (list): RGB color list |
|
|
""" |
|
|
color_map = num_classes * [0, 0, 0] |
|
|
for i in range(0, num_classes): |
|
|
j = 0 |
|
|
lab = i |
|
|
while lab: |
|
|
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) |
|
|
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) |
|
|
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) |
|
|
j += 1 |
|
|
lab >>= 3 |
|
|
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] |
|
|
return color_map |
|
|
|
|
|
|
|
|
def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5): |
|
|
""" |
|
|
Args: |
|
|
im (PIL.Image.Image): PIL image |
|
|
np_boxes (np.ndarray): shape:[N,6], N: number of box, |
|
|
matix element:[class, score, x_min, y_min, x_max, y_max] |
|
|
np_masks (np.ndarray): shape:[N, im_h, im_w] |
|
|
labels (list): labels:['class1', ..., 'classn'] |
|
|
threshold (float): threshold of mask |
|
|
Returns: |
|
|
im (PIL.Image.Image): visualized image |
|
|
""" |
|
|
color_list = get_color_map_list(len(labels)) |
|
|
w_ratio = 0.4 |
|
|
alpha = 0.7 |
|
|
im = np.array(im).astype('float32') |
|
|
clsid2color = {} |
|
|
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) |
|
|
np_boxes = np_boxes[expect_boxes, :] |
|
|
np_masks = np_masks[expect_boxes, :, :] |
|
|
im_h, im_w = im.shape[:2] |
|
|
np_masks = np_masks[:, :im_h, :im_w] |
|
|
for i in range(len(np_masks)): |
|
|
clsid, score = int(np_boxes[i][0]), np_boxes[i][1] |
|
|
mask = np_masks[i] |
|
|
if clsid not in clsid2color: |
|
|
clsid2color[clsid] = color_list[clsid] |
|
|
color_mask = clsid2color[clsid] |
|
|
for c in range(3): |
|
|
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 |
|
|
idx = np.nonzero(mask) |
|
|
color_mask = np.array(color_mask) |
|
|
im[idx[0], idx[1], :] *= 1.0 - alpha |
|
|
im[idx[0], idx[1], :] += alpha * color_mask |
|
|
return Image.fromarray(im.astype('uint8')) |
|
|
|
|
|
|
|
|
def draw_box(im, np_boxes, labels, threshold=0.5): |
|
|
""" |
|
|
Args: |
|
|
im (PIL.Image.Image): PIL image |
|
|
np_boxes (np.ndarray): shape:[N,6], N: number of box, |
|
|
matix element:[class, score, x_min, y_min, x_max, y_max] |
|
|
labels (list): labels:['class1', ..., 'classn'] |
|
|
threshold (float): threshold of box |
|
|
Returns: |
|
|
im (PIL.Image.Image): visualized image |
|
|
""" |
|
|
draw_thickness = min(im.size) // 320 |
|
|
draw = ImageDraw.Draw(im) |
|
|
clsid2color = {} |
|
|
color_list = get_color_map_list(len(labels)) |
|
|
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) |
|
|
np_boxes = np_boxes[expect_boxes, :] |
|
|
|
|
|
for dt in np_boxes: |
|
|
clsid, bbox, score = int(dt[0]), dt[2:], dt[1] |
|
|
if clsid not in clsid2color: |
|
|
clsid2color[clsid] = color_list[clsid] |
|
|
color = tuple(clsid2color[clsid]) |
|
|
|
|
|
if len(bbox) == 4: |
|
|
xmin, ymin, xmax, ymax = bbox |
|
|
print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],' |
|
|
'right_bottom:[{:.2f},{:.2f}]'.format( |
|
|
int(clsid), score, xmin, ymin, xmax, ymax)) |
|
|
|
|
|
draw.line( |
|
|
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), |
|
|
(xmin, ymin)], |
|
|
width=draw_thickness, |
|
|
fill=color) |
|
|
elif len(bbox) == 8: |
|
|
x1, y1, x2, y2, x3, y3, x4, y4 = bbox |
|
|
draw.line( |
|
|
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)], |
|
|
width=2, |
|
|
fill=color) |
|
|
xmin = min(x1, x2, x3, x4) |
|
|
ymin = min(y1, y2, y3, y4) |
|
|
|
|
|
|
|
|
text = "{} {:.4f}".format(labels[clsid], score) |
|
|
tw, th = draw.textsize(text) |
|
|
draw.rectangle( |
|
|
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color) |
|
|
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) |
|
|
return im |
|
|
|
|
|
|
|
|
def draw_segm(im, |
|
|
np_segms, |
|
|
np_label, |
|
|
np_score, |
|
|
labels, |
|
|
threshold=0.5, |
|
|
alpha=0.7): |
|
|
""" |
|
|
Draw segmentation on image |
|
|
""" |
|
|
mask_color_id = 0 |
|
|
w_ratio = .4 |
|
|
color_list = get_color_map_list(len(labels)) |
|
|
im = np.array(im).astype('float32') |
|
|
clsid2color = {} |
|
|
np_segms = np_segms.astype(np.uint8) |
|
|
for i in range(np_segms.shape[0]): |
|
|
mask, score, clsid = np_segms[i], np_score[i], np_label[i] |
|
|
if score < threshold: |
|
|
continue |
|
|
|
|
|
if clsid not in clsid2color: |
|
|
clsid2color[clsid] = color_list[clsid] |
|
|
color_mask = clsid2color[clsid] |
|
|
for c in range(3): |
|
|
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 |
|
|
idx = np.nonzero(mask) |
|
|
color_mask = np.array(color_mask) |
|
|
idx0 = np.minimum(idx[0], im.shape[0] - 1) |
|
|
idx1 = np.minimum(idx[1], im.shape[1] - 1) |
|
|
im[idx0, idx1, :] *= 1.0 - alpha |
|
|
im[idx0, idx1, :] += alpha * color_mask |
|
|
sum_x = np.sum(mask, axis=0) |
|
|
x = np.where(sum_x > 0.5)[0] |
|
|
sum_y = np.sum(mask, axis=1) |
|
|
y = np.where(sum_y > 0.5)[0] |
|
|
x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1] |
|
|
cv2.rectangle(im, (x0, y0), (x1, y1), |
|
|
tuple(color_mask.astype('int32').tolist()), 1) |
|
|
bbox_text = '%s %.2f' % (labels[clsid], score) |
|
|
t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0] |
|
|
cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3), |
|
|
tuple(color_mask.astype('int32').tolist()), -1) |
|
|
cv2.putText( |
|
|
im, |
|
|
bbox_text, (x0, y0 - 2), |
|
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
|
0.3, (0, 0, 0), |
|
|
1, |
|
|
lineType=cv2.LINE_AA) |
|
|
return Image.fromarray(im.astype('uint8')) |
|
|
|
|
|
|
|
|
def get_color(idx): |
|
|
idx = idx * 3 |
|
|
color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255) |
|
|
return color |
|
|
|
|
|
|
|
|
def visualize_pose(imgfile, |
|
|
results, |
|
|
visual_thresh=0.6, |
|
|
save_name='pose.jpg', |
|
|
save_dir='output', |
|
|
returnimg=False, |
|
|
ids=None): |
|
|
try: |
|
|
import matplotlib.pyplot as plt |
|
|
import matplotlib |
|
|
plt.switch_backend('agg') |
|
|
except Exception as e: |
|
|
print('Matplotlib not found, please install matplotlib.' |
|
|
'for example: `pip install matplotlib`.') |
|
|
raise e |
|
|
skeletons, scores = results['keypoint'] |
|
|
skeletons = np.array(skeletons) |
|
|
kpt_nums = 17 |
|
|
if len(skeletons) > 0: |
|
|
kpt_nums = skeletons.shape[1] |
|
|
if kpt_nums == 17: |
|
|
EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8), |
|
|
(7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14), |
|
|
(13, 15), (14, 16), (11, 12)] |
|
|
else: |
|
|
EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8), |
|
|
(8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12), |
|
|
(8, 13)] |
|
|
NUM_EDGES = len(EDGES) |
|
|
|
|
|
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ |
|
|
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ |
|
|
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] |
|
|
cmap = matplotlib.cm.get_cmap('hsv') |
|
|
plt.figure() |
|
|
|
|
|
img = cv2.imread(imgfile) if type(imgfile) == str else imgfile |
|
|
|
|
|
color_set = results['colors'] if 'colors' in results else None |
|
|
|
|
|
if 'bbox' in results and ids is None: |
|
|
bboxs = results['bbox'] |
|
|
for j, rect in enumerate(bboxs): |
|
|
xmin, ymin, xmax, ymax = rect |
|
|
color = colors[0] if color_set is None else colors[color_set[j] % |
|
|
len(colors)] |
|
|
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1) |
|
|
|
|
|
canvas = img.copy() |
|
|
for i in range(kpt_nums): |
|
|
for j in range(len(skeletons)): |
|
|
if skeletons[j][i, 2] < visual_thresh: |
|
|
continue |
|
|
if ids is None: |
|
|
color = colors[i] if color_set is None else colors[color_set[j] |
|
|
% |
|
|
len(colors)] |
|
|
else: |
|
|
color = get_color(ids[j]) |
|
|
|
|
|
cv2.circle( |
|
|
canvas, |
|
|
tuple(skeletons[j][i, 0:2].astype('int32')), |
|
|
2, |
|
|
color, |
|
|
thickness=-1) |
|
|
|
|
|
to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0) |
|
|
fig = matplotlib.pyplot.gcf() |
|
|
|
|
|
stickwidth = 2 |
|
|
|
|
|
for i in range(NUM_EDGES): |
|
|
for j in range(len(skeletons)): |
|
|
edge = EDGES[i] |
|
|
if skeletons[j][edge[0], 2] < visual_thresh or skeletons[j][edge[ |
|
|
1], 2] < visual_thresh: |
|
|
continue |
|
|
|
|
|
cur_canvas = canvas.copy() |
|
|
X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]] |
|
|
Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]] |
|
|
mX = np.mean(X) |
|
|
mY = np.mean(Y) |
|
|
length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5 |
|
|
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) |
|
|
polygon = cv2.ellipse2Poly((int(mY), int(mX)), |
|
|
(int(length / 2), stickwidth), |
|
|
int(angle), 0, 360, 1) |
|
|
if ids is None: |
|
|
color = colors[i] if color_set is None else colors[color_set[j] |
|
|
% |
|
|
len(colors)] |
|
|
else: |
|
|
color = get_color(ids[j]) |
|
|
cv2.fillConvexPoly(cur_canvas, polygon, color) |
|
|
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) |
|
|
if returnimg: |
|
|
return canvas |
|
|
save_name = os.path.join( |
|
|
save_dir, os.path.splitext(os.path.basename(imgfile))[0] + '_vis.jpg') |
|
|
plt.imsave(save_name, canvas[:, :, ::-1]) |
|
|
print("keypoint visualize image saved to: " + save_name) |
|
|
plt.close() |
|
|
|
|
|
|
|
|
def visualize_attr(im, results, boxes=None, is_mtmct=False): |
|
|
if isinstance(im, str): |
|
|
im = Image.open(im) |
|
|
im = np.ascontiguousarray(np.copy(im)) |
|
|
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) |
|
|
else: |
|
|
im = np.ascontiguousarray(np.copy(im)) |
|
|
|
|
|
im_h, im_w = im.shape[:2] |
|
|
text_scale = max(0.5, im.shape[0] / 3000.) |
|
|
text_thickness = 1 |
|
|
|
|
|
line_inter = im.shape[0] / 40. |
|
|
for i, res in enumerate(results): |
|
|
if boxes is None: |
|
|
text_w = 3 |
|
|
text_h = 1 |
|
|
elif is_mtmct: |
|
|
box = boxes[i] |
|
|
text_w = int(box[0]) + 3 |
|
|
text_h = int(box[1]) |
|
|
else: |
|
|
box = boxes[i] |
|
|
text_w = int(box[2]) + 3 |
|
|
text_h = int(box[3]) |
|
|
for text in res: |
|
|
text_h += int(line_inter) |
|
|
text_loc = (text_w, text_h) |
|
|
cv2.putText( |
|
|
im, |
|
|
text, |
|
|
text_loc, |
|
|
cv2.FONT_ITALIC, |
|
|
text_scale, (0, 255, 255), |
|
|
thickness=text_thickness) |
|
|
return im |
|
|
|
|
|
|
|
|
def visualize_action(im, |
|
|
mot_boxes, |
|
|
action_visual_collector=None, |
|
|
action_text="", |
|
|
video_action_score=None, |
|
|
video_action_text=""): |
|
|
im = cv2.imread(im) if isinstance(im, str) else im |
|
|
im_h, im_w = im.shape[:2] |
|
|
|
|
|
text_scale = max(1, im.shape[1] / 400.) |
|
|
text_thickness = 2 |
|
|
|
|
|
if action_visual_collector: |
|
|
id_action_dict = {} |
|
|
for collector, action_type in zip(action_visual_collector, action_text): |
|
|
id_detected = collector.get_visualize_ids() |
|
|
for pid in id_detected: |
|
|
id_action_dict[pid] = id_action_dict.get(pid, []) |
|
|
id_action_dict[pid].append(action_type) |
|
|
for mot_box in mot_boxes: |
|
|
|
|
|
if mot_box[0] in id_action_dict: |
|
|
text_position = (int(mot_box[3] + mot_box[5] * 0.75), |
|
|
int(mot_box[4] - 10)) |
|
|
display_text = ', '.join(id_action_dict[mot_box[0]]) |
|
|
cv2.putText(im, display_text, text_position, |
|
|
cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), 2) |
|
|
|
|
|
if video_action_score: |
|
|
cv2.putText( |
|
|
im, |
|
|
video_action_text + ': %.2f' % video_action_score, |
|
|
(int(im_w / 2), int(15 * text_scale) + 5), |
|
|
cv2.FONT_ITALIC, |
|
|
text_scale, (0, 0, 255), |
|
|
thickness=text_thickness) |
|
|
|
|
|
return im |
|
|
|
|
|
|
|
|
def visualize_vehicleplate(im, results, boxes=None): |
|
|
if isinstance(im, str): |
|
|
im = Image.open(im) |
|
|
im = np.ascontiguousarray(np.copy(im)) |
|
|
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) |
|
|
else: |
|
|
im = np.ascontiguousarray(np.copy(im)) |
|
|
|
|
|
im_h, im_w = im.shape[:2] |
|
|
text_scale = max(1.0, im.shape[0] / 400.) |
|
|
text_thickness = 2 |
|
|
|
|
|
line_inter = im.shape[0] / 40. |
|
|
for i, res in enumerate(results): |
|
|
if boxes is None: |
|
|
text_w = 3 |
|
|
text_h = 1 |
|
|
else: |
|
|
box = boxes[i] |
|
|
text = res |
|
|
if text == "": |
|
|
continue |
|
|
text_w = int(box[2]) |
|
|
text_h = int(box[5] + box[3]) |
|
|
text_loc = (text_w, text_h) |
|
|
cv2.putText( |
|
|
im, |
|
|
"LP: " + text, |
|
|
text_loc, |
|
|
cv2.FONT_ITALIC, |
|
|
text_scale, (0, 255, 255), |
|
|
thickness=text_thickness) |
|
|
return im |
|
|
|
|
|
|
|
|
def draw_press_box_lanes(im, np_boxes, labels, threshold=0.5): |
|
|
""" |
|
|
Args: |
|
|
im (PIL.Image.Image): PIL image |
|
|
np_boxes (np.ndarray): shape:[N,6], N: number of box, |
|
|
matix element:[class, score, x_min, y_min, x_max, y_max] |
|
|
labels (list): labels:['class1', ..., 'classn'] |
|
|
threshold (float): threshold of box |
|
|
Returns: |
|
|
im (PIL.Image.Image): visualized image |
|
|
""" |
|
|
|
|
|
if isinstance(im, str): |
|
|
im = Image.open(im).convert('RGB') |
|
|
elif isinstance(im, np.ndarray): |
|
|
im = Image.fromarray(im) |
|
|
|
|
|
draw_thickness = min(im.size) // 320 |
|
|
draw = ImageDraw.Draw(im) |
|
|
clsid2color = {} |
|
|
color_list = get_color_map_list(len(labels)) |
|
|
|
|
|
if np_boxes.shape[1] == 7: |
|
|
np_boxes = np_boxes[:, 1:] |
|
|
|
|
|
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) |
|
|
np_boxes = np_boxes[expect_boxes, :] |
|
|
|
|
|
for dt in np_boxes: |
|
|
clsid, bbox, score = int(dt[0]), dt[2:], dt[1] |
|
|
if clsid not in clsid2color: |
|
|
clsid2color[clsid] = color_list[clsid] |
|
|
color = tuple(clsid2color[clsid]) |
|
|
|
|
|
if len(bbox) == 4: |
|
|
xmin, ymin, xmax, ymax = bbox |
|
|
|
|
|
draw.line( |
|
|
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), |
|
|
(xmin, ymin)], |
|
|
width=draw_thickness, |
|
|
fill=(0, 0, 255)) |
|
|
elif len(bbox) == 8: |
|
|
x1, y1, x2, y2, x3, y3, x4, y4 = bbox |
|
|
draw.line( |
|
|
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)], |
|
|
width=2, |
|
|
fill=color) |
|
|
xmin = min(x1, x2, x3, x4) |
|
|
ymin = min(y1, y2, y3, y4) |
|
|
|
|
|
|
|
|
text = "{}".format(labels[clsid]) |
|
|
tw, th = draw.textsize(text) |
|
|
draw.rectangle( |
|
|
[(xmin + 1, ymax - th), (xmin + tw + 1, ymax)], fill=color) |
|
|
draw.text((xmin + 1, ymax - th), text, fill=(0, 0, 255)) |
|
|
return im |
|
|
|
|
|
|
|
|
def visualize_vehiclepress(im, results, threshold=0.5): |
|
|
results = np.array(results) |
|
|
labels = ['violation'] |
|
|
im = draw_press_box_lanes(im, results, labels, threshold=threshold) |
|
|
return im |
|
|
|
|
|
|
|
|
def visualize_lane(im, lanes): |
|
|
if isinstance(im, str): |
|
|
im = Image.open(im).convert('RGB') |
|
|
elif isinstance(im, np.ndarray): |
|
|
im = Image.fromarray(im) |
|
|
|
|
|
draw_thickness = min(im.size) // 320 |
|
|
draw = ImageDraw.Draw(im) |
|
|
|
|
|
if len(lanes) > 0: |
|
|
for lane in lanes: |
|
|
draw.line( |
|
|
[(lane[0], lane[1]), (lane[2], lane[3])], |
|
|
width=draw_thickness, |
|
|
fill=(0, 0, 255)) |
|
|
|
|
|
return im |
|
|
|
|
|
|
|
|
def visualize_vehicle_retrograde(im, mot_res, vehicle_retrograde_res): |
|
|
if isinstance(im, str): |
|
|
im = Image.open(im).convert('RGB') |
|
|
elif isinstance(im, np.ndarray): |
|
|
im = Image.fromarray(im) |
|
|
|
|
|
draw_thickness = min(im.size) // 320 |
|
|
draw = ImageDraw.Draw(im) |
|
|
|
|
|
lane = vehicle_retrograde_res['fence_line'] |
|
|
if lane is not None: |
|
|
draw.line( |
|
|
[(lane[0], lane[1]), (lane[2], lane[3])], |
|
|
width=draw_thickness, |
|
|
fill=(0, 0, 0)) |
|
|
|
|
|
mot_id = vehicle_retrograde_res['output'] |
|
|
if mot_id is None or len(mot_id) == 0: |
|
|
return im |
|
|
|
|
|
if mot_res is None: |
|
|
return im |
|
|
np_boxes = mot_res['boxes'] |
|
|
|
|
|
if np_boxes is not None: |
|
|
for dt in np_boxes: |
|
|
if dt[0] not in mot_id: |
|
|
continue |
|
|
bbox = dt[3:] |
|
|
if len(bbox) == 4: |
|
|
xmin, ymin, xmax, ymax = bbox |
|
|
|
|
|
draw.line( |
|
|
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), |
|
|
(xmin, ymin)], |
|
|
width=draw_thickness, |
|
|
fill=(0, 255, 0)) |
|
|
|
|
|
|
|
|
text = "retrograde" |
|
|
tw, th = draw.textsize(text) |
|
|
draw.rectangle( |
|
|
[(xmax + 1, ymin - th), (xmax + tw + 1, ymin)], |
|
|
fill=(0, 255, 0)) |
|
|
draw.text((xmax + 1, ymin - th), text, fill=(0, 255, 0)) |
|
|
|
|
|
return im |
|
|
|